Sửa đề: Tìm ĐKXĐ
1: ĐKXĐ: 2x-10>=0
=>x>=5
2: ĐKXĐ: 4-2x>=0
=>x<=2
3: ĐKXĐ: (x-4)(x+4)>=0
=>x>=4 hoặc x<=-4
Sửa đề: Tìm ĐKXĐ
1: ĐKXĐ: 2x-10>=0
=>x>=5
2: ĐKXĐ: 4-2x>=0
=>x<=2
3: ĐKXĐ: (x-4)(x+4)>=0
=>x>=4 hoặc x<=-4
6) \(\sqrt{x^2+12x+36}=-x-6\)
7) \(\sqrt{9x^2-12x+4}=3x-2\)
8) \(\sqrt{16-24x+9x^2}=2x-10\)
9) \(\sqrt{x^2-6x+9}==2x-3\)
10) \(\sqrt{x^2-3x+\dfrac{9}{4}}=\dfrac{3}{x}x-4\)
giải phương trình
a)\(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
b)\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)
c)\(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\)
d)\(\dfrac{1}{3}\sqrt{2x}-\sqrt{8x}+\sqrt{18x}-10=2\)
giải các phương trình sau:
\(1,\sqrt{18x}-6\sqrt{\dfrac{2x}{9}}=3-\sqrt{\dfrac{x}{2}}\)
\(2,\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\sqrt{27x}=-4\)
3, \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
\(4,\sqrt{16x+16}-\sqrt{9x+9}=1\)
\(5,\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
\(6,\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=\dfrac{-2}{3}\)
Rút gọn biểu thức:
1) \(\sqrt{9-4\sqrt{5}}+\sqrt{\left(25+1\right)^2}\)
2) \(\dfrac{x^2-5}{x+\sqrt{5}}\)
3) \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\)
4) \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
Cho hai biểu thức \(A=\dfrac{2\sqrt{x}+3}{5x-10\sqrt{x}}\) và \(B=\dfrac{2}{\sqrt{x}-2}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}-7}{2x-3\sqrt{x}-2}\) với x>0, x≠4. Tìm x sao cho \(\dfrac{B}{A}\)nhận giá trị là một số nguyên.
Tìm điều kiện có nghĩa:
1) \(\sqrt{x^2+2x-3}\)
2) \(\sqrt{2x^2+5x+3}\)
3) \(\sqrt{\dfrac{4}{x-1}}\)
4) \(\sqrt{\dfrac{-1}{x-3}}\)
5) \(\sqrt{\dfrac{-3}{x+2}}\)
6) \(\sqrt{\dfrac{1}{2a-1}}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
cho biểu thức P=\(\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right)\):\(\left(\dfrac{\sqrt{x}-1}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
1. Rút gọn biểu thức P
2. Tính giá trị của P biết x=\(\sqrt{7+4\sqrt{3}}\)+\(\sqrt{7-4\sqrt{3}}\)
Tìm `ĐKXĐ`:
\(\sqrt{\dfrac{-5}{6+x}}\)
\(\sqrt{\dfrac{-2}{6-x}}\)
\(\sqrt{\dfrac{-x+3}{-6}}\)
\(\sqrt{\dfrac{7x-1}{-9}}\)
\(\sqrt{\dfrac{x+2}{x^2+2x+1}}\)
\(\sqrt{\dfrac{x-2}{x^2-2x+4}}\)
a) \(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\)
b) \(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)
c) \(\sqrt{x^2+6x-9}-2\sqrt{x^2-2x+1}+\sqrt{x^2}=0\)
giải phương trình
1)\(\sqrt{9\left(x-1\right)}=21\)
2)\(\sqrt{1-x}+\sqrt{4-4x}-\dfrac{1}{3}\sqrt{16-16x}+5=0\)
3)\(\sqrt{2x}-\sqrt{50}=0\)
4)\(\sqrt{4x^2+4x+1}=6\)
5)\(\sqrt{\left(x-3\right)^2}=3-x\)