Lời giải:
$m^2=(\sin x+\cos x)^2=\sin ^2x+\cos ^2x+2\sin x\cos x=1+2\sin x\cos x$
$\Rightarrow \sin x\cos x=\frac{m^2-1}{2}$
Ta có:
$|\sin ^3x-\cos ^3x|=|\sin x-\cos x||\sin ^2x+\sin x\cos x+\cos ^2x|$
$=\sqrt{(\sin x-\cos x)^2}|1+\sin x\cos x|$
$=\sqrt{1-2\sin x\cos x}.|1+\sin x\cos x|$
$=\sqrt{1-(m^2-1)}.|1+\frac{m^2-1}{2}|$
$=\sqrt{2-m^2}.\frac{m^2+1}{2}$
\(sinx+cosx=m\\ \Rightarrow sin^2x+cos^2x+2sinx.cosx=m^2\\ \Rightarrow sinx.cosx=\dfrac{1-m^2}{2}\)
Mặt khác:
\(sinx-cosx=\left(sinx+cosx\right)-2cosx=m-2cosx\)
Có:
\(\left|sin^3x-cos^3x\right|=\left|\left(sinx-cosx\right)\left(sin^2x+sinx.cosx+cos^2x\right)\right|\\ =\left|\left(m-2cosx\right)\left(1+\dfrac{1-m^2}{2}\right)\right|\\ =\left|\left(m-2cosx\right)\left(\dfrac{3-m^2}{2}\right)\right|\)