Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Bên cạnh con đường trước khi vào thành phố người ta xây một ngọn tháp đèn lộng lẫy. Ngọn tháp hình tứ giác đều S.ABCD cạnh bên S A = 600  mét, A S B = 15 ° . Do sự cố đường dây điện tại điểm Q (là trung điểm của SA) bị hỏng, người ta tạo ra một con đường từ A đến Q gồm bốn đoạn thẳng: AM, MN, NP, PQ (hình vẽ). Để tiết kiệm kinh phí, kỹ sư đã nghiên cứu và nó được chiều dài con đường từ A đến Q ngắn nhất.

Tính tỷ số k = A M + M N N P + P Q

A. k = 2

B.  k = 4 3

C.  k = 3 2

D.  k = 5 3

Cao Minh Tâm
11 tháng 1 2018 lúc 9:37

Đáp án A

Phương pháp:

Trải 4 mặt của hình chóp ra mặt phẳng và tìm điều kiện để A M + M N + N P + P Q  là nhỏ nhất.

Cách giải:

Ta “xếp” 4 mặt của hình chóp lên một mặt phẳng, được như hình bên:

Như hình vẽ ta tháy, để tiết kiệm dây nhất thì các đoạn AM, MN, NP, PQ phải tạo thành một đoạn thẳng AQ.

Lúc này, xét Δ S A Q có:

A S M = M S N = N S P = P S Q = 15 °

S A = 600 m , S Q = 300 m

⇒ k = A M + M N N P + P Q = A N N Q = S A S Q = 2

(Vì A N N Q = S A S Q do tính chất của đường phân giác SN).


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết