Bài 5 (3,0 điểm): Cho nửa đường tròn tâm O đường kính AB, vẽ bán kính OC vuông góc với AB. Trên cung BC lấy điểm D (D khác B và C), tia AD cắt OC tại E.
a. Chứng minh tứ giác OBDE là tứ giác nội tiếp
b. Chứng minh: AE.AD = AC
c. Kẻ El vuông góc với BC tại I. Chứng minh rằng I là tâm đường tròn ngoại tiếp tam giác CDE . Giúp mình câu c vs ạ!!!
a: góc ADB=1/2*180=90 độ
góc EOB+góc EDB=180 độ
=>EOBD nội tiếp
b: Xét ΔACE và ΔADC có
góc ACE=góc ADC
góc CAE chung
=>ΔACE đồng dạng với ΔADC
=>AC^2=AE*AD
c: góc EIB=góc EDB=90 độ
=>EIDB nội tiếp
=>góc IED=góc IBD; góc IDE=góc IBE
góc IBE+góc OBE=góc IBO=45 độ
ΔEAB cân tại E
=>góc EAB=góc EBA
=>góc IBE+góc EAB=45 độ
góc IDE=góc IBE
=>góc IDE+1/2*sđ cung BD=45 độ
1/2*sđ cung BC=1/2*sđ cung CD+1/2*sđ cung DB
=>góc IED+1/2*sđ cung BD=45 độ
=>góc IDE=góc IED
=>ID=IE
góc ICE=45 độ; góc EIC=90 độ
=>ΔEIC vuôngcân tại I
=>IE=IC=ID
=>ĐPCM