Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cường Đậu

Bài 2.Cho tam giác ABC vuôngtạiA ,có AB = 3cm ; AC = 4cm. Vẽ đường cao AH (HϵBC)
a) Tính độ dài BC;AH;BH; Diện tích ΔABC?
b) Chứng minh ΔHBA đồng dạngvới ΔHAC  
c) Chứng minh HA= HB.HC
d) Kẻ đường phân giác AD (DϵBC ). Tính các độ dài DB và DC?

hpng
21 tháng 3 2023 lúc 20:50

a.

• áp dụng định lí pytago trong tam giác ABC vuông tại A, ta có :

BC^2 = AC^2 + AB^2 

BC^2 = 3^2 + 4^2

BC^2 = 9 + 16

BC^2 = 25

BC = căn bậc 2 của 25

BC = 5 ( cm )

vậy BC = 5 cm

• diện tích của tam giác ABC là :

3 . 4 : 2 = 6 ( cm^2 )

vậy diện tích của tam giác ABC là 6 cm^2

b. xét tam giác HBA và tam giác HAC, ta có :

góc HBA = góc HAC ( hai góc kề bù )

góc A là góc chung ( gt )

do đó: tam giác HBA và tam giác HAC là hai tam giác đồng dạng ( g - g )

c. HA/HB = HC/HA ( cmt )

=> HA^2 = HB . HC

d. vì BD = 1/2BC ( t/chất của đường phân giác trong tam giác vuông )

nên BD = 1/2 . 5 = 2,5 ( cm )

mà BD = DC = 1/2BC

=> DC = 2,5 ( cm )

vậy BC , DC = 2,5 cm

Nguyễn Lê Phước Thịnh
21 tháng 3 2023 lúc 23:44

a: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

BH=3^2/5=1.8cm

\(S_{BCA}=\dfrac{1}{2}\cdot3\cdot4=6\left(cm^2\right)\)

b Xét ΔHBA vuông tại H và ΔHAC vuông tại H co

góc HBA=góc HAC

=>ΔHBA đồng dạng với ΔHAC

c: ΔHBA đồng dạng với ΔHAC

=>HB/HA=HA/HC

=>HA^2=HB*HC

d: ΔABC có AD là phân giác

=>BD/AB=CD/AC

=>BD/3=CD/4=(BD+CD)/(3+4)=5/7

=>BD=15/7cm; CD=20/7cm


Các câu hỏi tương tự
Đạt Nguyễn tiến
Xem chi tiết
Trần Lê Đình Tuấn
Xem chi tiết
Vinh Nguyễn12345678910
Xem chi tiết
Tuyết Ly
Xem chi tiết
Nguyễn Thúy Quỳnh
Xem chi tiết
HỌC SINH 2K9
Xem chi tiết
lê nguyễn yến nhi
Xem chi tiết
Tuyết Ly
Xem chi tiết
Pain do
Xem chi tiết