\(Q=x^2+y^2-4x-y+7\\ =\left(x^2-4x+4\right)+\left(y^2-y+\dfrac{1}{4}\right)+\dfrac{11}{4}\\ =\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x,y\)
\(Dấu''=''\ xảy\ ra\ khi:\)
\(x-2=y-\dfrac{1}{2}=0< =>x=2;y=\dfrac{1}{2}\)
\(Vậy\ GTNN\ của\ Q\ là :11/4<=>x=2;y=1/2\)
\(=x^2-4x+4+y^2-y+\dfrac{1}{4}+2.75=\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2+2.75>=2.75\)
Dấu '=' xảy ra khi x=2 và y=1/2