Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ArcherJumble

Ai làm hộ em câu 15 được không em cảm ơn ạ ;-;

undefined

英雄強力
28 tháng 2 2022 lúc 23:45

x2-(m-1)x+m-2=0(1)

Để phương trình có hai nghiệm phân biệt thì Δ=(-m+1)2-4(m-2)

                                                                          =m2-2m+1-4m+8

                                                                          =m2-6m+9

                                                                          =(m-3)2≥0 với mọi m

⇒phương trình luôn có hai nghiệm phân biệt

Áp dụng định lý Vi-ét ta có:\(\begin{cases} x_1+x_2=m-2 \\ x_1.x_2=m-1 \end{cases}\)(2)

TH1:x1,x2 là hai cạnh góc vuông

⇒x1=x2

Từ (2)\(\begin{cases} x_1+x_1=m-2 \\ x_1^2=m-1 \end{cases}\)

\(\Leftrightarrow\)\(\begin{cases} x_1=\frac{m-1}{2}\\ x_1=\sqrt{m-2} \end{cases}\)

\(\Leftrightarrow\)\(\dfrac{m-1}{2}\)=\(\sqrt{m-2}\)

\(\Leftrightarrow\)\(\dfrac{m^2-2m+1}{4}\)=m-2

\(\Leftrightarrow\)m2-6m+9=0

\(\Leftrightarrow\)(m-3)2=0

\(\Leftrightarrow\)m=3

TH2:x1 là cạnh huyền,x2 là cạnh góc vuông

⇒x1=\(\sqrt{2}\)x2

Từ (2)\(\begin{cases} \sqrt{2} x_2+x_2=m-1 \\ \sqrt{2} x_2^2=m-2 \end{cases}\)

\(\Leftrightarrow\)\(\begin{cases} x_2= \frac{m-1}{1+\sqrt{2}} \\ x_2=\sqrt{\frac{m-2}{\sqrt{2}}} \end{cases}\)

\(\Leftrightarrow\)\(\dfrac{m-1}{1+\sqrt{2}}\)=\(\sqrt{\dfrac{m-2}{\sqrt{2}}}\)

\(\Leftrightarrow\)\(\dfrac{m^2-2m+1}{3+2\sqrt{2}}\)=\(\dfrac{m-2}{\sqrt{2}}\)

\(\Leftrightarrow\)\(\left(3+2\sqrt{2}\right)\)\(m\)\(-6-2\sqrt{2}\)\(=\sqrt{2}m^2-2\sqrt{2}m+\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}m^2-\left(4\sqrt{2}+3\right)m+3\sqrt{2}+6=0\)

\(\Leftrightarrow\)rồi m bằng bao nhiêu thì tự giải nhé mệt r


Các câu hỏi tương tự
ArcherJumble
Xem chi tiết
ArcherJumble
Xem chi tiết
ArcherJumble
Xem chi tiết
ArcherJumble
Xem chi tiết
ArcherJumble
Xem chi tiết
ArcherJumble
Xem chi tiết
ArcherJumble
Xem chi tiết
ArcherJumble
Xem chi tiết
ArcherJumble
Xem chi tiết