\(\Delta=25-4\left(m-1\right)=29-4m>0\Rightarrow m< \dfrac{29}{4}\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m-1\end{matrix}\right.\)
\(2x_1=\sqrt{x_2}\Rightarrow\left\{{}\begin{matrix}x_1;x_2\ge0\\4x_1^2=x_2=5-x_1\end{matrix}\right.\)
\(\Rightarrow4x_1^2+x_1-5=0\Rightarrow\left[{}\begin{matrix}x_1=1\\x_1=-\dfrac{5}{4}< 0\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow x_2=4x_1^2=4\)
Thế vào \(x_1x_2=m-1\Rightarrow m-1=4\Rightarrow m=5\)