a: \(=25a^4-30a^5b^4+9b^8a^6\)
b: \(=\dfrac{1}{9}x^6-4x^3y+36y^2\)
a: \(=25a^4-30a^5b^4+9b^8a^6\)
b: \(=\dfrac{1}{9}x^6-4x^3y+36y^2\)
Bài 1 : giải phương trình
a) (8x + 3)(2x - 1) = (2x - 1)2
b) (x - 5)2 - 36 = 0
c) (4x - 3)2 - 4(x + 3)2
d) x3 - 3x -2 = 0
e) x3 + 2x2 - 4x - 8 = 0
a) x(4x+3y)−(y−2x)2
b) (3+x)(x−3)−(x−1)(x2−3)
c)−2(x−3)2+(x+1)(5x−1)
d) (2x+1)(4x2−2x+1)−3x2(x−2)
e) (3x2+19x+20):(3x+4)
f) (7x2+x3+12x−6):(x2+4x−3)
Chứng minh các biểu thức sau không phụ thuộc vào x
1) (2x -5)(2x + 5) -(2x -3)2-12x
2) (x + 3)(x2-3x + 9) -(20 + x3)
3) (2y -1)3-2y(2y -3)2-6y(2y -2)
Giải phương trình
a) 1 phần x-1 - 3x2 phần x3+1 = 2x phần x2+x+1
b) x phần 3 + x = x phần 6 + 2x+1 phần 2
Phân Tích đa thức thành nhân tử:
a.4xy-10x^2
b.3x(x+1)+6y(x+1)
c.25x^2-y^2
d. 5xy^2-10xyz+5xz^2
e. x^2-5x+6
f. 12x^2y+8x^3+6xy^2+y^3
Phân tích đa thức sau thành nhân tử :
a2 + b2 + 2ab + 2a + 2b + 1
3x(x- 2y)- 6y(2y - x)
x2 + 2x -3
Bài 2: Phân tích thành nhân tử:
b) (x+2)2-25
c) 36(x-y)2
d) x2+1/2x+1/16
e) 2x4y3-3x2y4+5x3y4
f) 3x(x-2)+5(2-x)
g) 3x(x-2y)+6y(2y-x)
i) x(x-1)+(1-x)2
k) 2y(x+2)-3x-6
l) x2+6x-3(x+6)
m) xy+x-2y-2
n) 3x2-3xy-5x+5y
15) x3-8/125
16) x2-x-y2-yy
17) x3+4x-(y3+4y)
18) 5x-√5x+1/4
19) x3+2x2+x-16xy2
20) (x+2y)2-(x-y)
21) (9x2-33x3x+2y+-4y2
22) 9x2-6xy+3x-y+y2
Phân tích các đa thức sau thành nhân tử:
a) 2xy + 3z + 6y + xz; b) a 4 - 9 a 3 + a 2 - 9a;
c) 3 x 2 + 5y - 3xy + (-5x); d) x 2 - (a + b)x + ab;
e) 4 x 2 - 4xy + y 2 - 9 t 2 ; g) x 3 – 3 x 2 y + 3x y 2 – y 3 – z 3
h) x2 - y2 + 8x + 6y + 7.
8. Biết rằng phương trình P(x) = x3 +3x 2 −1 có ba nghiệm phân biệt a < b < c. Chứng minh rằng c = a2 +2a− 2,b = c2 +2c−2,a = b2 +2b−2.
Chia đa thức cho đơn thức: ( mình cần gấp, giúp mik vs )
a) {3(x-y)4+2(x-y)3-5(x-y)2} : (y-x)2
b) (x-2y)3 : (x2-4xy+4y2)
c) (x3+y3) : (x+y)