\(A=2+2^2+2^3+2^4+...+2^{100}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\cdot\left(2+2^2\right)\)
\(=6\left(1+2^2+...+2^{98}\right)⋮6\)
=>\(A=3\cdot2\cdot\left(1+2^2+...+2^{98}\right)⋮3\)