Chứng minh từ tỉ lệ thức \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\) thì ta suy ra được các tỉ lệ thức sau:\(\dfrac{a+b}{b}\)=\(\dfrac{c+d}{d}\);\(\dfrac{a-b}{b}\)=\(\dfrac{c-d}{d}\) và\(\dfrac{a}{a+b}\)=\(\dfrac{c}{c+d}\).
Từ tỉ lệ thức \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\), với a , b , c , d ≠ 0 có thể suy ra:
A. \(\dfrac{3a}{2c}\)=\(\dfrac{2d}{3b}\)
B. \(\dfrac{3b}{a}\)=\(\dfrac{3d}{c}\)
C. \(\dfrac{5a}{5d}\)=\(\dfrac{b}{c}\)
D. \(\dfrac{a}{2b}\)=\(\dfrac{d}{2c}\)
cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)(b\(\ne\)0;d\(\ne\)0)
a) \(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
b)\(\dfrac{a+b}{a}=\dfrac{c+d}{d}\)
cho đẳng thức a.d=b.c tỉ lệ thức nào sau đây sai ( a, b , c , d khác 0 ) :
A \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) B \(\dfrac{d}{b}\) = \(\dfrac{c}{a}\) C \(\dfrac{b}{d}\) = \(\dfrac{c}{a}\) D \(\dfrac{a}{c}\) = \(\dfrac{b}{d}\)
giúp mình đi nha mn =(
Từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\), (Các tỉ số đã viết đều có nghĩa). Chứng minh các tỉ lệ thức sau:
a) \(\dfrac{a}{b}=\dfrac{a+b}{c+d}\)
b)\(\dfrac{a+b}{a}=\dfrac{c+d}{c}\)
Bài 7: Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh rằng ta có các tỉ lệ thức sau( giả thiết các tỉ lệ thức phải chứng minh đều có nghĩa):
a)\(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\) b)\(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
c)\(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\) d)\(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
ai hộ mik vs
Chứng minh rằng từ tỉ lệ thuận
\(\dfrac{a^{2k}+b^{2k}}{c^{2k}+d^{2k}}\)=\(\dfrac{a^{2k}-b^{2k}}{c^{2k}-d^{2k}}\)(k\(\varepsilon\)N) ta có thể suy ra được \(\dfrac{a}{b}\)= cộng trừ \(\dfrac{c}{d}\)
cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)(b\(\ne\)0;d\(\ne\)0)
c)\(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
d)\(\dfrac{3c^2+5a^2}{3d^2+5b^2}=\dfrac{c^2}{d^2}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh \(\dfrac{a-b}{b}=\dfrac{c-d}{d}\)