3.
\(P>1\Leftrightarrow\dfrac{\sqrt{a}+1}{\sqrt{a}-2}>1\)
\(\Leftrightarrow\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-1>0\)
\(\Leftrightarrow\dfrac{\sqrt{a}+1-\sqrt{a}+2}{\sqrt{a}-2}>0\)
\(\Leftrightarrow\dfrac{3}{\sqrt{a}-2}>0\)
\(\Leftrightarrow\sqrt{a}-2>0\)
\(\Leftrightarrow a>4\)
Vậy \(a>4,a\ne16\)
3: Để P>1 thì P-1>0
\(\Leftrightarrow\dfrac{\sqrt{a}+1-\sqrt{a}+2}{\sqrt{a}-2}>0\)
\(\Leftrightarrow a>4\)
4.
\(P< 1\Leftrightarrow\dfrac{\sqrt{a}-1}{\sqrt{a}-4}< 1\)
\(\Leftrightarrow\dfrac{\sqrt{a}-1}{\sqrt{a}-4}-1< 0\)
\(\Leftrightarrow\dfrac{\sqrt{a}-1-\sqrt{a}+4}{\sqrt{a}-4}< 0\)
\(\Leftrightarrow\dfrac{3}{\sqrt{a}-4}< 0\)
\(\Leftrightarrow\sqrt{a}-4< 0\)
\(\Leftrightarrow a< 16\)
Vậy \(0\le a< 16\)
Bài 4:
Để P<1 thì P-1<0
\(\Leftrightarrow\dfrac{\sqrt{a}-1-\sqrt{a}+4}{\sqrt{a}-4}< 0\)
\(\Leftrightarrow\dfrac{3}{\sqrt{a}-4}< 0\)
\(\Leftrightarrow\sqrt{a}-4< 0\)
hay a<16
Kết hợp ĐKXĐ, ta được: \(0\le x< 16\)