\(2\cdot3^x+3^{2+x}=891\\\Rightarrow 3^x\cdot2+3^x\cdot3^2=891\\\Rightarrow 3^x\cdot(2+3^2)=891\\\Rightarrow 3^x\cdot(2+9)=891\\\Rightarrow 3^x\cdot 11=891\\\Rightarrow 3^x=891:11\\\Rightarrow 3^x=81\\\Rightarrow 3^x=3^4\\\Rightarrow x=4\)
Vậy $x=4$.
\(2\cdot3^x+3^{2+x}=891\)
=>\(2\cdot3^x+3^x\cdot9=891\)
=>\(3^x=\dfrac{891}{11}=81\)
=>x=4