Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
títtt

1) tính \(\lim\limits_{n\rightarrow\infty}\left(-2n^5+4x^4-3n^2+4\right)\)

2) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{-3n^2+2}{n-2}\)

Nguyễn Lê Phước Thịnh
24 tháng 11 2023 lúc 12:20

1: \(\lim\limits_{n\rightarrow\infty}\left(-2n^5+4n^4-3n^2+4\right)\)

\(=\lim\limits_{n\rightarrow\infty}\left[n^5\left(-2+\dfrac{4}{n}-\dfrac{3}{n^3}+\dfrac{4}{n^5}\right)\right]\)

\(=-\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow\infty}n^5=+\infty\\\lim\limits_{n\rightarrow\infty}\left(-2+\dfrac{4}{n}-\dfrac{3}{n^3}+\dfrac{4}{n^5}\right)=-2< 0\end{matrix}\right.\)

2: \(\lim\limits_{n\rightarrow\infty}\dfrac{-3n^2+2}{n-2}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^2\left(-3+\dfrac{2}{n^2}\right)}{n\left(1-\dfrac{2}{n}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n\left(-3+\dfrac{2}{n^2}\right)}{1-\dfrac{2}{n}}\)

\(=-\infty\) vì \(\lim\limits_{n\rightarrow\infty}n=+\infty;\lim\limits_{n\rightarrow\infty}\dfrac{-3+\dfrac{2}{n^2}}{1-\dfrac{2}{n}}=-\dfrac{3}{1}=-3< 0\)


Các câu hỏi tương tự
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết
títtt
Xem chi tiết