Giải các phương trình sau:
a)\(\sqrt{x^2-3x+5}+\sqrt{x+4}=\sqrt{x^2-x-1}+\sqrt{2x+1}\)
b)\(3\sqrt[3]{x-5}+2\sqrt[3]{x-3}=7\sqrt[6]{\left(x-5\right)\left(x-3\right)}\)
c)\(\sqrt{12-x^3}-\sqrt[3]{2x^2-7}=1\)
d) \(\sqrt[5]{x-2}+\sqrt[7]{x-3}=\sqrt[3]{4-x}\)
e)\(4x^2+\frac{3}{4}=2\sqrt{x}\)
Giải phương trình
a, \(x+1+2\sqrt{7-x}-2\sqrt{x+1}=\sqrt{7+6x-x^2}\)
b, \(4x^2+3x+3=4\sqrt{x^3+3x^2}+2\sqrt{2x-1}\)
c, \(\sqrt{x}-\sqrt{x+1}-\sqrt{x+4}+\sqrt{x+9}=0\)
d, \(3x^2+4x+10=2\sqrt{14x^2-7}\)
1, \(\sqrt{x-1}+\sqrt{x-4}=5\)
2, \(2x-7\sqrt{x}+5=0\)
3, \(\sqrt{2x+1}+\sqrt{x-3}=2\sqrt{x}\)
4, \(x-4\sqrt{x}+2021\sqrt{x-4}+4=0\)
5, \(\sqrt{2x-3}-\sqrt{x+1}=7\left(4-x\right)\)
Giải phương trình:
a, \(4\sqrt{x+3}-\sqrt{x-1}=x+7\)
b, \(2x\sqrt{x^2-x+1}+4\sqrt{3x+1}=2x^2+2x+6\)
c, \(\sqrt{2x-3}+\sqrt{5-2x}=3x^2-12x+14\)
d, \(\sqrt{7-x}+\sqrt{x-5}=x^2-12x+38\)
Giải phương trình:
\(a,\sqrt{5x^3-1}+\sqrt[3]{2x-1}+x-4=0\)
\(b,\sqrt{x-2}+\sqrt{4-x}=2x^2-5x-3\)
\(c,\sqrt[3]{x^2}-2\sqrt[3]{x}-\left(x-4\right)\sqrt{x-7}-3x+28=0\)
2) Tính: (Giải chi tiết từng bước)
a) \(2\sqrt{125}+\dfrac{3}{2}\sqrt{80}-\sqrt{180}-\dfrac{2}{7}\sqrt{245}\)
b) \(\sqrt{11-4\sqrt{7}}-\sqrt{16+6\sqrt{7}}\)
3) Tìm x, biết:
a) \(\sqrt{\left(x-1\right)^2}=4\)
b) \(\sqrt{36x^2-60x+25}=4\)
1) Rút gọn biểu thức:
a, \(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
b, \(\sqrt{4-\sqrt{7}}+\sqrt{4+\sqrt{7}}\)
2) Giải phương trình:
a, \(\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right).\sqrt{6x}=2\)
b, \(\left(\sqrt{\frac{3}{x}}+\sqrt{\frac{x}{3}}+\sqrt{3x}\right).\sqrt{3x}=3\)
c, \(\sqrt{x^2+2x+1}-\sqrt{x^2-1}=0\)
d, \(\sqrt{x}+\sqrt{x+1}=\frac{1}{\sqrt{x}}\)
1)\(7\sqrt{3x-7}+\left(4x-7\right)\sqrt{7-x}=32\)
2)\(4x^2-11x+6=\left(x-1\right)\sqrt{2x^2-6x+6}\)
3)\(9+3\sqrt{x\left(3-2x\right)}=7\sqrt{x}+5\sqrt{3-2x}\)
4)\(\sqrt{2x^2+4x+7}=x^4+4x^3+3x^2-2x-7\)
5)\(\frac{6-2x}{\sqrt{5-x}}+\frac{6+2x}{\sqrt{5+x}}=\frac{8}{3}\)
6)\(2\left(5x-3\right)\sqrt{x+1}+\left(x+1\right)\sqrt{3-x}=3\left(5x+1\right)\)
7)\(\sqrt{7x+7}+\sqrt{7x-6}+2\sqrt{49x^2+7x-42}=181-14x\)
a. \(\sqrt{\left(2x+3\right)^2}=x+1\)
b. \(\sqrt{\left(2x-1\right)^2}=x+1\)
c. \(\sqrt{x+3}=5\)
d. \(\sqrt{x+2}=\sqrt{7}\)
e. \(5\sqrt{x}=20\)
f. \(\sqrt{x+4}=7\)
g. \(\sqrt{\left(2x+1\right)^2}=3\)