a, \(\sqrt{\left(2x+3\right)^2}=x+1\)
\(\Leftrightarrow\left|2x+3\right|=x+1\)
TH1: \(\left\{{}\begin{matrix}2x+3=x+1\\2x+3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x\ge-\dfrac{3}{2}\end{matrix}\right.\Rightarrow\) vô nghiệm.
Vậy phương trình vô nghiệm.
TH2: \(\left\{{}\begin{matrix}-2x-3=x+1\\2x+3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{3}\\x< -\dfrac{3}{2}\end{matrix}\right.\Rightarrow\) vô nghiệm.
b,
a, \(\sqrt{\left(2x-1\right)^2}=x+1\)
\(\Leftrightarrow\left|2x-1\right|=x+1\)
TH1: \(\left\{{}\begin{matrix}2x-1=x+1\\2x-1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x\ge\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x=2\)
TH2: \(\left\{{}\begin{matrix}-2x+1=x+1\\2x-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x=0\)
c, ĐK: \(x\ge-3\)
\(\sqrt{x+3}=5\)
\(\Leftrightarrow x+3=25\)
\(\Leftrightarrow x=22\left(tm\right)\)
d, ĐK: \(x\ge-2\)
\(\sqrt{x+2}=\sqrt{7}\)
\(\Leftrightarrow x+2=7\)
\(\Leftrightarrow x=5\left(tm\right)\)
e, ĐK: \(x\ge0\)
\(5\sqrt{x}=20\)
\(\Leftrightarrow\sqrt{x}=4\)
\(\Leftrightarrow x=16\left(tm\right)\)
f, ĐK: \(x\ge-4\)
\(\sqrt{x+4}=7\)
\(\Leftrightarrow x+4=49\)
\(\Leftrightarrow x=45\left(tm\right)\)
g, \(\sqrt{\left(2x+1\right)^2}=3\)
\(\Leftrightarrow\left|2x+1\right|=3\)
\(\Leftrightarrow2x+1=\pm3\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
c. \(\sqrt{x+3}=5\)
<=> x + 3 = 52
<=> x = 25 - 3
<=> x = 22
f. \(\sqrt{x+4}=7\)
<=> x + 4 = 72
<=> x = 49 - 4
<=> x = 45
e. 5\(\sqrt{x}\) = 20
<=> \(\sqrt{x}\) = 20 : 5
<=> \(\sqrt{x}\) = 4
<=> x = 42 = 16
g. \(\sqrt{\left(2x+1\right)^2}\) = 3
<=> 2x + 1 = 3
<=> 2x = 2
<=> x = 1
a. \(\sqrt{\left(2x+3\right)^2}\) = x + 1
<=> 2x + 3 = x + 1
<=> 2x - x = 1 - 3
<=> x = -2
b. \(\sqrt{\left(2x-1\right)^2}\) = x + 1
<=> 2x - 1 = x + 1
<=> 2x - x = 1 + 1
<=> x = 2
d. \(\sqrt{x+2}=\sqrt{7}\)
<=> \(x+2=\left(\sqrt{7}\right)^2\)
<=> x + 2 = 7
<=> x = 7 - 2
<=> x = 5
a: ta có: \(\sqrt{\left(2x+3\right)^2}=x+1\)
\(\Leftrightarrow\left|2x+3\right|=x+1\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=x+1\left(x\ge-\dfrac{3}{2}\right)\\2x+3=-x-1\left(x< -\dfrac{3}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\left(loại\right)\\x=-\dfrac{4}{3}\left(loại\right)\end{matrix}\right.\)
b: Ta có: \(\sqrt{\left(2x-1\right)^2}=x+1\)
\(\Leftrightarrow\left|2x-1\right|=x+1\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x+1\left(x\ge\dfrac{1}{2}\right)\\2x-1=-x-1\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=0\left(nhận\right)\end{matrix}\right.\)
c: Ta có: \(\sqrt{x+3}=5\)
\(\Leftrightarrow x+3=25\)
hay x=22