a: \(A=\sqrt{4x+20}-2\sqrt{x+5}+\sqrt{9x+45}\)
\(=2\sqrt{x+5}-2\sqrt{x+5}+3\sqrt{x+5}\)
\(=3\sqrt{x+5}\)
b: A=6
=>\(3\sqrt{x+5}=6\)
=>\(\sqrt{x+5}=2\)
=>x+5=4
=>x=-1
a: \(A=\sqrt{4x+20}-2\sqrt{x+5}+\sqrt{9x+45}\)
\(=2\sqrt{x+5}-2\sqrt{x+5}+3\sqrt{x+5}\)
\(=3\sqrt{x+5}\)
b: A=6
=>\(3\sqrt{x+5}=6\)
=>\(\sqrt{x+5}=2\)
=>x+5=4
=>x=-1
Cho biểu thức A=\(\dfrac{x\sqrt{x}-4x-\sqrt{x}+4}{2x\sqrt{x}-14x+28\sqrt{x}-16}\)
a/ Tìm x để A có nghĩa, từ đó rút gọn A.
b/ Tìm các giá trị nguyên của x để biểu thức A nhận giá trị nguyên
Cho biểu thức \(A=\dfrac{x\sqrt{x}-4x-\sqrt{x}+4}{2x\sqrt{x}-14x+28\sqrt{x}-16}\)
a)Tìm x để A có nghĩa,từ đó rút gọn A.
b)Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên.
Câu 2: Tìm x biết:
a. \(\sqrt{x-1}=2\)
b. \(\sqrt{3x+1}=\sqrt{4x-3}\)
c. \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
d. \(\sqrt{x^2-4x+4}=\sqrt{6+2\sqrt{5}}\)
Cho biểu thức B= \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}\) với \(x\ge-1\).
a) Rút gọn biểu thức B.
b) tìm x sao cho B có giá trị là 16.
Cho biểu thức : A= \(\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)\) (với \(x\ne0;x\ne1\)).
a) rút gọn A.
b) Tìm x để A=-1.
1.Thực hiện phép tính:
2.Tìm x biết:
\(2\sqrt{36x-36}-\dfrac{1}{3}\sqrt{9x-9}-4\sqrt{4x-4}+\sqrt{x-1}=16\)
3. Cho biểu thức: ( với x0; x1)
a) Rút gọn biểu thức P
b) Xác định x để
4.
Cho tam giác ABC vuông tại A, đường cao AH=6cm, HC= 8cm.
a)Tính độ dài HB,BC, AB, AC
b)Kẻ . Tính độ dài HD và diện tích tam giác AHD
5. Giải tam giác vuông ABC vuông tại A, biết AC = 8cm, và
Cho biểu thức:
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{3-11\sqrt{x}}{9-x}\)
a) Rút gọn biểu thức A.
b) Tìm tất cả các giá trị của x để \(A\ge0\).
1/ Cho hai biểu thức A=\(\dfrac{\sqrt{x}-2}{\sqrt{x}}\) và B=\(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\)+ \(\dfrac{\sqrt{x}}{\sqrt{x}-3}\)-\(\dfrac{2x}{x-9}\) với x>0 , x≠9
a) Rút gọn biểu thức B
b) Tìm các giá trị nguyên của x để P<0 với P=A.B
2.tìm x
a)\(\sqrt{x^2-6x+9}\)
b)\(\sqrt{x^2-2x+1}\)
c)\(\sqrt{4x+12}-3\sqrt{x+3}+7\sqrt{9x+27}=20\)
d)\(\sqrt{4x+20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=6\)