a: Ta có: \(\sqrt{3x-2}=3\)
\(\Leftrightarrow3x-2=9\)
hay \(x=\dfrac{11}{3}\)
b: Ta có: \(\sqrt{7-5x}=2\)
\(\Leftrightarrow7-5x=4\)
hay \(x=\dfrac{3}{5}\)
a. \(\sqrt{3x-2}=3\)
<=> 3x - 2 = 32
<=> 3x = 9 + 2
<=> 3x = 11
<=> x = \(\dfrac{11}{3}\)
b. \(\sqrt{7-5x}=2\)
<=> 7 - 5x = 22
<=> -5x = 4 - 7
<=> -5x = -3
<=> x = \(\dfrac{3}{5}\)
c. \(\sqrt{\left(4x+5\right)^2}=9\)
<=> 4x + 5 = 9
<=> 4x = 4
<=> x = 1
d. \(\sqrt{x^2-6x+9}=4\)
<=> x2 - 6x + 9 = 16
<=> (x - 3)2 = 16
<=> x - 3 = 4
<=> x = 7
\(g,\sqrt{x+2}-\sqrt{x-6}=2\left(x\ge6\right)\\ \Leftrightarrow x+2+x-6-2\sqrt{\left(x+2\right)\left(x-6\right)}=4\\ \Leftrightarrow2x-8-2\sqrt{x^2-4x-12}=0\\ \Leftrightarrow x-4-\sqrt{x^2-4x-12}=0\\ \Leftrightarrow\sqrt{x^2-4x-12}=x-4\\ \Leftrightarrow x^2-4x-12=x^2-8x+16\\ \Leftrightarrow4x=28\\ \Leftrightarrow x=7\left(TM\right)\)
g. \(\sqrt{x+2}-\sqrt{x-6}=2\)
<=> \(\sqrt{x+2}=2+\sqrt{x-6}\)
<=> \(\left(\sqrt{x+2}\right)^2=\left(2+\sqrt{x-6}\right)^2\)
<=> x + 2 = 4 + \(4\sqrt{x-6}\) + (x - 6)
<=> 4\(\sqrt{x-6}\) = 4 + x - 6 - x - 2
<=> \(4\sqrt{x-6}\) = -4
<=> \(\sqrt{x-6}\) = -1
<=> PT vô nghiệm
f. \(\sqrt{2x+38}=x-5\)
Ta có \(\sqrt{2x+38}\) phải ≥ 0 ( vì biểu thức trong căn ko bao giờ được mang giá trị âm )
==> x - 5 phải ≥ 0 ==> x ≥ 5
f.\(\sqrt{2x+38}=x-5\)
<=> 2x + 38 = (x - 5)2
<=> 2x + 38 = x2 - 10x + 25
<=> 2x + 38 - x2 + 10x - 25 = 0
<=> 12x + 13 - x2 = 0
<=> 12x + 1 + 12 - x2 = 0
<=> 12.( x + 1 ) + ( 1 - x2 ) = 0
<=> 12. ( x + 1 ) + ( 1 - x ) . ( 1 + x ) = 0
<=> ( 12 + 1 - x ) . ( x + 1) = 0
<=> ( 13 - x) . ( x + 1 ) = 0
<=> \(\left\{{}\begin{matrix}x=13\\x=-1\left(KTM\right)\end{matrix}\right.\)
==> x = 13
Em hơi ngáo tí =)), có j em sai chỗ nào mong mn thông cảm =))