Cho A(-1;2) B(3;1) và đường thẳng Δ : x-y+1 = 0. Tìm C trên Δ sao cho tam giác ABC thỏa mãn:
a) tg ABC cân tại B
b)tg ABC vuông ở C
Hỏi đáp
Cho A(-1;2) B(3;1) và đường thẳng Δ : x-y+1 = 0. Tìm C trên Δ sao cho tam giác ABC thỏa mãn:
a) tg ABC cân tại B
b)tg ABC vuông ở C
Trong mặt phẳng Oxy ,cho dường thẳng d1: x - 2y + 3=0 và hai điểm A(1;3) B(-2:4).Điểm M (x;y) ∈ d1 sao cho | \(\overrightarrow{MA}\) +\(\overrightarrow{MB}\)| đạt giá trị nhỏ nhất .
\(M\in\left(d_1\right)\Rightarrow M\left(x;\dfrac{x+3}{2}\right)\)
\(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MI}\right|\) \(\left(\overrightarrow{IA}=\overrightarrow{BI}\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=-\dfrac{1}{2}\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{7}{2}\end{matrix}\right.\Rightarrow I\left(-\dfrac{1}{2};\dfrac{7}{2}\right)\)
\(\Rightarrow\left|\overrightarrow{MA}+\overrightarrow{MB}\right|_{min}\Leftrightarrow\left|\overrightarrow{MI}\right|_{min}\Leftrightarrow\overrightarrow{MI}\perp\overrightarrow{AB}\Leftrightarrow\overrightarrow{MI}.\overrightarrow{AB}=0\)
\(\Leftrightarrow\left(x_I-x_M;y_I-y_M\right).\left(x_B-x_A;y_B-y_A\right)=0\)
\(\Leftrightarrow\left(x_I-x_M\right)\left(x_B-x_A\right)+\left(y_I-y_M\right)\left(y_B-y_A\right)=0\)
\(\Leftrightarrow\left(-\dfrac{1}{2}-x\right).\left(-3\right)+\dfrac{7}{2}-\dfrac{x+3}{2}=0\Rightarrow M\left(...\right)\)
Tìm m để hệ bpt sau : \(\left\{{}\begin{matrix}\dfrac{x-1}{x+2}\le1\\2x+1\le m\end{matrix}\right.\)
a. có nghiệm
b. có 2 nghiệm
c. vô số nghiệm
d. có nghiệm duy nhất
Ta có : \(\dfrac{x-1}{x+2}\le1\)
\(\Leftrightarrow\dfrac{x-1-\left(x+2\right)}{x+2}=\dfrac{x-1-x-2}{x+2}=\dfrac{-3}{x+2}\le0\)
\(\Leftrightarrow x+2>0\)
\(\Leftrightarrow x>-2\)
- Ta có hệ BPT : \(\left\{{}\begin{matrix}x>-2\\x\le\dfrac{m-1}{2}\end{matrix}\right.\)
a, - Để HBPT có nghiệm \(\Leftrightarrow\dfrac{m-1}{2}>-2\)
\(\Leftrightarrow\dfrac{m-1+4}{2}=\dfrac{m+3}{2}>0\)
\(\Leftrightarrow m>-3\)
b, Là lạ :vvv
c, Mk nghĩ là vô nghiệm :vvvv
- Để HBPT vô nghiệm <=> \(m\le-3\)
d, Mk nghĩ là có nghiệm đúng với mọi x thuộc R .
- Không tồn tại m thỏa mãn điều kiện :vvvvv
Tìm tập hợp các điểm cách 2 đường thẳng sau với tỉ lệ khoảng cách là \(\dfrac{5}{13}\)
- Cách 5 phần : (d) : 5x - 12y + 4 = 0
- Cách 13 phần: (Δ) : 4x - 3y - 10 = 0
Gọi \(M\left(x;y\right)\)
\(d\left(M,d\right)=\dfrac{5}{13}d\left(M,\Delta\right)\Leftrightarrow\dfrac{\left|5x-12y+4\right|}{13}=\dfrac{5}{13}.\dfrac{\left|4x-3y-10\right|}{5}\Leftrightarrow\left[{}\begin{matrix}x-9y+14=0\\9x-15y-6=0\end{matrix}\right.\)
Trên hệ trục tọa độ xOy: cho tam giác ABC có A(-1;1), B(1;3) và trọng tâm G\(\left(-2;\dfrac{2}{3}\right)\). Tìm tọa độ M trên tia Oy sao cho tam giác MBC vuông tại M
\(\left\{{}\begin{matrix}x_C=3x_G-x_A-x_B=-6\\y_C=3y_G-y_A-y_B=-2\end{matrix}\right.\) \(\Rightarrow C\left(-6;-2\right)\)
Gọi \(M\left(0;m\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BM}=\left(-1;m-3\right)\\\overrightarrow{CM}=\left(6;m+2\right)\end{matrix}\right.\)
\(\overrightarrow{BM}.\overrightarrow{CM}=0\Leftrightarrow-6+\left(m-3\right)\left(m+2\right)=0\)
\(\Leftrightarrow m^2-m-12=0\Rightarrow\left[{}\begin{matrix}m=-3\\m=4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}M\left(0;-3\right)\\M\left(0;4\right)\end{matrix}\right.\)
a) Cho hai điểm B,C phân biệt. Tập hợp những điểm M thỏa mãn \(\overrightarrow{CM}.\overrightarrow{CB}=\overrightarrow{CM}^2\) là
b) Cho 3 điểm A,B,C phân biệt . Tập hợp những điểm M mà \(\overrightarrow{CM}.\overrightarrow{CB}=\overrightarrow{CA}.\overrightarrow{CB}\) LÀ
c) Cho tam giác ABC, điểm J thỏa mãn \(\overrightarrow{AK}=3\overrightarrow{AJ}\), I là trung điểm của cạnh AB, điểm K thỏa mãn \(\overrightarrow{KA}+\overrightarrow{KB}+2\overrightarrow{KC}=\overrightarrow{0}\). Một điểm M thay đỏi nhưng luôn thỏa mãn \(\left(3\overrightarrow{MK}+\overrightarrow{AK}\right).\left(\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}\right)=0\). Tập hợp điểm M là đường nào
Trên hệ trục tọa độ xOy, cho tam giác ABC có A(4;3), B(2;7), C(-3;-8). Tọa độ chân đường cao kẻ từ đỉnh A xuống cạnh BC
gọi H(x;y) là chân đường cao hạ từ A
\(\overrightarrow{AH}\left(x-4;y-3\right)\);\(\overrightarrow{BC}\left(-5;-15\right)\)
có AH vuông góc với bc \(\Rightarrow\overrightarrow{AH.}\overrightarrow{BC}=\overrightarrow{0}\)suy ra được 1 phương trình
có B,H,C thẳng hàng suy ra \(\overrightarrow{BH}=k.\overrightarrow{BC}=\left(-5k;-15k\right)\Rightarrow x-2=-5k;y-7=-15k\Rightarrow\left(x-2\right):\left(y-7\right)=1:3\)có 2 phương trình 2 ẩn giải tìm được x;y
Trong mặt phẳng tọa độ (Oxy, ) cho tam giác (ABC ) có (A( (4;3
trong mặt phẳng tọa độ Oxy,cho hai đường thẳng d1:2x-y+5=0,d2:3x+6y-1=0 và điểm P(-2,0).Gọi A là giao điểm của d1 và d2.Khi đó đường thẳng d đi qua P và cùng với d1,d2 tạo thành một tam giác cân đỉnh A có phương trình là?
Gọi \(M\left(x;y\right)\) là điểm cách đều \(d_1\) và \(d_2\)
\(\Rightarrow\dfrac{\left|2x-y+5\right|}{\sqrt{2^2+\left(-1\right)^2}}=\dfrac{\left|3x+6y-1\right|}{\sqrt{3^2+6^2}}\)
\(\Leftrightarrow\left|6x-3y+15\right|=\left|3x+6y-1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-9y+16=0\\9x+3y+14=0\end{matrix}\right.\)
\(\Rightarrow\) Phương trình đường thẳng cần tìm có dạng:
\(\left[{}\begin{matrix}9\left(x+2\right)+3\left(y-0\right)=0\\3\left(x+2\right)-9\left(y-0\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+y+6=0\\x-3y+2=0\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn
Lời giải:
Lấy $M(6,7)$ thuộc đường thẳng.
Vecto chỉ phương của đường thẳng: $(13,14)$. Khi đó phương trình tham số của đường thẳng là:
\(\left\{\begin{matrix} x=6+13t\\ y=7+14t\end{matrix}\right.\)
Cho tam giác ABC có đỉnh A ( -2;3) và hai đường trung tuyến lần lượt có phương trình là \(2x-y+1=0\); \(x+y-4=0\) .Khi đó điểm nào sau đây thuộc thường thẳng BC
a. K (3;-1)
b. M (1;9)
c. Q (4;-1)
d. N (0;-13)
xin cách giải chi tiết vs ạ
Vì điểm A không thuộc hai đường trung tuyến trên nên hai đường trung tuyến đã cho xuất phát từ B và C.
Gọi BM, CN là các trung tuyến của tam giác.
Giả sử BM có phương trình \(x+y-4=0\), CN có phương trình \(2x-y+1=0\)
Gọi \(M=\left(m;4-m\right)\Rightarrow C\left(2m+2;5-2m\right)\)
Vì C thuộc đường thẳng \(2x-y+1=0\)
\(\Rightarrow2\left(2m+2\right)-\left(5-2m\right)+1=0\)
\(\Leftrightarrow m=0\)
\(\Rightarrow C=\left(2;5\right)\)
Tương tự ta tìm được \(B=\left(3;1\right)\)
\(\Rightarrow BC:4x+y-13=0\)
\(\Rightarrow M=\left(1;9\right)\in BC\)