Chương III: PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG

Hỏi đáp

Nguyễn Trần Thành Đạt
23 tháng 1 2021 lúc 4:19

Em chia nhỏ bài ra nhé!

Nguyễn Trần Thành Đạt
23 tháng 1 2021 lúc 4:19

Em nên hỏi 1 bài cho 1 câu hỏi thôi nhé!

Đậu Hũ Kho
Xem chi tiết
你混過 vulnerable 他 難...
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 1 2021 lúc 21:06

a.

\(\overrightarrow{EF}=\left(1;-1\right)\Rightarrow d_4\) nhận (1;-1) là 1 vtpt

Phương trình \(d_4\) :

\(1\left(x-2\right)-1\left(y+3\right)=0\Leftrightarrow x-y-5=0\)

b.

\(\Delta\) nhận \(\left(2;-1\right)\) là 1 vtcp nên \(d_5\) nhận \(\left(2;-1\right)\) là 1 vtpt

Pt \(d_5\) : \(2\left(x-2\right)-1\left(y+3\right)=0\Leftrightarrow2x-y-7=0\)

c.

\(\Delta\) nhận \(\left(-1;-3\right)\) là 1 vtcp nên \(d_6\) nhận \(\left(3;-1\right)\) là 1 vtpt

Phương trình \(d_6\) :

\(3\left(x-4\right)-1\left(y-6\right)=0\Leftrightarrow3x-y-6=0\)

fghj
Xem chi tiết
Akai Haruma
30 tháng 1 2021 lúc 18:19

Lời giải:

Vì $B$ thuộc đt $2x-y=0$ nên gọi tọa độ của $B$ là $(a,2a)$

Gọi $H$ là trung điểm của $AC$ thì $H(2, 2)$

$\overrightarrow{BH}=(2-a,2-2a)$

$\overrightarrow{AC}=(2,6)$

Vì $ABC$ là tam giác cân tại $B$ nên $\overrightarrow{BH}\perp \overrightarrow{AC}$

$\Rightarrow 2(2-a)+6(2-2a)=0$

$\Rightarrow a=\frac{8}{7}$. Do đó $B(\frac{8}{7}, \frac{16}{7})$

$\overrightarrow{AB}=(\frac{1}{7}, \frac{23}{7})$

$\Rightarrow \overrightarrow{n_{AB}}=(\frac{-23}{7}, \frac{1}{7})$

PTĐT $AB$ là:

$\frac{-23}{7}(x-1)+\frac{1}{7}(y+1)=0$

$\Leftrightarrow -23x+y+24=0$

Tương tự với PTĐT $BC$

Phạm Lan Hương
30 tháng 1 2021 lúc 18:24

undefined

Hồng Phúc
30 tháng 1 2021 lúc 18:52

Cách khác:

\(\overrightarrow{AC}=\left(2;6\right)\)

Phương trình đường thẳng AC:

\(\dfrac{x-1}{2}=\dfrac{y+1}{6}\Leftrightarrow3x-y-4=0\)

Gọi H là chân đường cao kẻ từ B, H có tọa độ:

\(\left\{{}\begin{matrix}x_H=\dfrac{1+3}{2}=2\\y_H=\dfrac{-1+5}{2}=2\end{matrix}\right.\Rightarrow H=\left(2;2\right)\)

Vì BH vuông góc với AC và có \(H\left(2;2\right)\) thuộc BH, phương trình đường thẳng BH: \(x+3y-8=0\)

Tọa độ điểm B là nghiệm của hệ:

\(\left\{{}\begin{matrix}2x-y=0\\x+3y-8=0\end{matrix}\right.\Rightarrow B\left(\dfrac{8}{7};\dfrac{16}{7}\right)\)

Đến đây thì dễ rồi, làm tiếp cách kia.

fghj
Xem chi tiết
Akai Haruma
30 tháng 1 2021 lúc 18:51

Lời giải:

$BD: x+2y-7=0; AD: x+3y-3=0$ nên $D$ chính là giao điểm của 2 PTĐT này.

\(\Rightarrow \left\{\begin{matrix} x_D+2y_D-7=0\\ x_D+3y_D-3=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_D=15\\ y_D=-4\end{matrix}\right.\)

Vì $ABCD$ là hình thoi nên $AC\perp BD$.

$\Rightarrow \overrightarrow{AC}=\overrightarrow{n_{BD}}=(1,2)$

$\Rightarrow \overrightarrow{n_{AC}}=(-2,1)$

PTĐT $AC$ là:

$-2(x-0)+1(y-1)=0\Leftrightarrow -2x+y-1=0\Leftrightarrow 2x-y+1=0$

Gọi $O$ là giao 2 đường chèo $AC, BD$. 

\(\Rightarrow \left\{\begin{matrix} 2x_O-y_O+1=0\\ x_O+2y_O-7=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x_O=1\\ y_O=3\end{matrix}\right.\)

$O$ là trung điểm $BD$ nên: $x_B=2x_O-x_D=2-15=-13$

$y_B=2y_O-y_D=6+4=10$

Vì $\overrightarrow{BC}=\overrightarrow{AD}$ nên PTĐT $BC$ có dạng:

$(x+13)+3(y-10)-3=0$

$\Leftrightarrow x+3y-30=0$

$O$ là trung điểm của $AC$ nên:

$x_C=2x_O-x_A=2-0=2$

$y_C=2y_C-y_A=6-1=5$

$\Rightarrow \overrightarrow{CD}=(13, -9)$

$\Rightarrow \overrightarrow{n_{CD}}=(9,13)$

PTĐT $CD$ là: $9(x-2)+13(y-5)=0\Leftrightarrow 9x+13y-83=0$

PTĐT $AB$ là: $9(x-0)+13(y-1)=0\Leftrightarrow 9x+13y-13=0$

 

 

Vũ Đức
Xem chi tiết
Akai Haruma
30 tháng 1 2021 lúc 21:50

Lời giải: 

$M\in d_1$ nên gọi tọa độ của $M$ là $(2a+3,a)$

Khoảng cách từ $M$ đến $(d_2)$ là:\(\frac{|2a+3+a+1|}{\sqrt{1^2+1^2}}=\frac{1}{\sqrt{2}}\Leftrightarrow |3a+4|=1\Leftrightarrow 3a+4=\pm 1\)

\(\Leftrightarrow a=-1; a=\frac{-5}{3}\)

Thay vào ta có tọa độ của điểm $M$

Minh Hồng
30 tháng 1 2021 lúc 21:54

Lấy \(M\in d_1\Rightarrow M\left(2y+3;y\right)\)

Ta có: \(d\left(M;d_2\right)=\dfrac{1}{\sqrt{2}}\Leftrightarrow\dfrac{\left|2y+3+y+1\right|}{\sqrt{1^2+1^2}}=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\dfrac{\left|3y+4\right|}{\sqrt{2}}=\dfrac{1}{\sqrt{2}}\Leftrightarrow\left|3y+4\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}3y+4=1\\3y+4=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-\dfrac{5}{3}\end{matrix}\right.\)

\(y=1\Rightarrow M\left(5;1\right)\)

\(y=-\dfrac{5}{3}\Rightarrow M\left(-\dfrac{1}{3};-\dfrac{5}{3}\right)\)

Vũ Đức
Xem chi tiết
Phạm Lan Hương
31 tháng 1 2021 lúc 0:05

undefinedundefined

Ngô Thành Chung
Xem chi tiết
Quách Phương
Xem chi tiết
Akai Haruma
17 tháng 2 2021 lúc 1:43

Lời giải:

Gọi tọa độ điểm $N$ là $(-2a-1,a)$. Khi đó:

\(|NA-NB|=|\sqrt{(-2a-1-1)^2+(a-4)^2}-\sqrt{(-2a-1+2)^2+a^2}|\)

\(=|\sqrt{5a^2+20}-\sqrt{5a^2-4a+1}|\)

Đặt \(f(a)=|\sqrt{5a^2+20}-\sqrt{5a^2-4a+1}|\)

\(f'(a)=0\Leftrightarrow a=\frac{4}{9}\)

Lập BBT ta có $|NA-NB|_{\max}=f(\frac{4}{9})$. Vậy $N(\frac{-17}{9}, \frac{4}{9})$