ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
tìm điều kiện bài toán:
a) \(y=\dfrac{1}{x}-\dfrac{\sqrt{2x-1}}{x^2-3x+2}\)
b) \(y=\dfrac{1}{x^2-1}-\sqrt{7-2x}\)
c) \(y=\dfrac{2}{x}+\dfrac{3}{4-2x+x^2}\)
d) \(y=\sqrt{25-x^2}-2\sqrt{x}+3\)
1. Cho \(x,y,z>0\) và \(x^3+y^2+z=2\sqrt{3}+1\). Tìm GTNN của biểu thức \(P=\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\)
2. Cho \(a,b>0\). Tìm GTNN của biểu thức \(P=\dfrac{8}{7a+4b+4\sqrt{ab}}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
Cho các số thực dương x, y, z thỏa mãn xyz = 1. Chứng minh rằng:
\(\dfrac{1}{\sqrt{x^2+1}}+\dfrac{1}{\sqrt{y^2}+1}+\dfrac{1}{z^2+1}\le\dfrac{3}{\sqrt{2}}\)
Giúp em giải các hệ phương trình này với
a)\(\begin{cases}x^4+2y^3-x=-\dfrac{1}{4}+3\sqrt{3}\\ y^4+2x^3-y=-\dfrac{1}{4}-3\sqrt{3}\end{cases}\)
b) \(\begin{cases} x+\dfrac{78y}{x^2+y^2}=20\\ y+\dfrac{78x}{x^2+y^2}=15\end{cases}\)
c) \(\begin{cases}\left(1-\dfrac{12}{y+3x}\right)\cdot \sqrt{x}=2\\ \left(1+\dfrac{12}{y+3x}\right)\cdot\sqrt{y}=6 \end{cases}\)
d) \(\begin{cases} \sqrt{x+1}+\sqrt[4]{x-1}-\sqrt{y^4+2}=y\\ x^2+2x(y-1)+y^2-6y+1=0\end{cases}\)
e) \(\begin{cases} \sqrt{4x^2+(4x-9)(x-y)}+\sqrt{xy}=3y\\ 4\sqrt{(x+2)(y+2x)}=3(x+3)\end{cases}\)
Cho 0≤x,y,z≤1
Tìm max \(D=\sqrt{\dfrac{x}{1+yz}}+\sqrt{\dfrac{y}{1+zx}}+\dfrac{z}{2+2xy}\)
tìm TXĐ của hàm số:
a) y=\(\dfrac{\sqrt{x^2-x+1}}{x-3}\)
b)y=\(\dfrac{\sqrt{5-2x}}{\left(x-2\right)\sqrt{x-1}}\)
1. Cho \(x,y,z>0\), \(x+y\le1\) và \(xyz=1\). Tìm GTLN của biểu thức \(P=\dfrac{1}{1+4x^2}+\dfrac{1}{1+4y^2}-\sqrt{z+1}\)
2. Cho \(x,y,z>0\), \(xyz=x+y+z\). Tìm GTNN của biểu thức \(P=xy+yz+zx-\sqrt{1+x^2}-\sqrt{1+y^2}-\sqrt{1+z^2}\) (dùng phương pháp lượng giác hóa)
I. HÀM SỐ, TXĐ, CHẴN LẺ, ĐƠN ĐIỆU, ĐỒ THỊ.
1. TXĐ CỦA HÀM SỐ
Câu 1.Tìm tập xác định của hàm số y=\(\dfrac{\sqrt{x-1}}{x-3}\)
Câu 2.Tìm tập xác định của hàm số y= \(\sqrt[3]{x-1}\)
Câu 3. Tìm tập xác định của hàm số y=\(\dfrac{\sqrt[3]{1-x}+3}{\sqrt{x+3}}\)
Câu 4. Tìm tập xác định của hàm số y=\(\sqrt{\left|x-2\right|}\)
cho x,y,z nguyen duong thoa man: \(\left\{{}\begin{matrix}\left|x-2y\right|\le\dfrac{1}{\sqrt{x}}\\\left|y-2x\right|\le\dfrac{1}{\sqrt{y}}\end{matrix}\right.\)
tim Max \(A=x^2+2y^2\)
Cho các số x, y, z thỏa mãn x+ y+ xyz= z. Giá trị lớn nhất của biểu thức P=\(\dfrac{2x}{\sqrt{\left(x^2+1\right)^3}}+\dfrac{x^2\left(1+\sqrt{yz}\right)^2}{\left(y+z\right)\left(x^2+1\right)}\)