\(\left(x+y-z\right)^3\\ =\left[\left(x+y\right)-z\right]^3\\ =\left(x+y\right)^3-3\left(x+y\right)^2z+3\left(x+y\right)z^2-z^3\\ =\left(x^3+3x^2y+3xy^2+y^3\right)-3z\left(x^2+2xy+y^2\right)+3z^2\left(x+y\right)-z^3\\ =x^3+3x^2y+3xy^2+y^3-3x^2z-6xyz-3y^2z+3xz^2+3yz^2-z^3\)