\(=\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\)
\(\sqrt{x}.\sqrt{y}.\left(\sqrt{x}-\sqrt{y}\right)\)
\(=\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\)
\(\sqrt{x}.\sqrt{y}.\left(\sqrt{x}-\sqrt{y}\right)\)
Biết \(0< x\le y\)và \(\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)^2+\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)+2\left(x+2y\right)}\right)+\left(\frac{y}{\sqrt{x}\left(\sqrt{x}+\sqrt{y}\right)}+\frac{x}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}\right)=\frac{5}{3}\)
Tính \(\frac{x}{y}\)
\(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\sqrt{xy}\left(x>=0,y>=0,,x#y\right)\))
Cho x, y, z > 0 và khác nhau đôi một. Tính: \(P=\frac{x}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)}+\frac{y}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{x}\right)}+\frac{z}{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{z}-\sqrt{y}\right)}\)
Rút gọn các biểu thức sau:
a)\(\frac{\sqrt{108x^3}}{\sqrt{12x}}\left(x>0\right)\)
b)\(\frac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}\left(x< 0;y\ne0\right)\)
c)\(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}+\sqrt{y}\right)^2\)
d) \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\left(x\ge\right)\)
e)\(\frac{x-1}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\left(y>0;x\ne1;y\ne1\right)\)
Chứng minh đẳng thức:
\(\frac{x}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)}+\frac{y}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{x}\right)}+\frac{z}{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{z}-\sqrt{y}\right)}=1\)(với x,y,z > 0 và từng đôi một khác nhau)
thực hiện phép tính :
\(\dfrac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\)( với x,y >0)
1. Chứng minh : \(\left(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right):\left(\sqrt{y}-\sqrt{x}\right)^2=1\)
Với x > 0; y > 0; x # y
\(\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{\sqrt{x^2}-\sqrt{y^2}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a) Rút gọn A
b) Chứng minh A ≥0
rút gọn Bt
a)\(\frac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
b)\(\frac{x-y}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\left(x\ne1,y\ne1,y>0\right)\)
Cho x>0,y>0,z>0, xyz=1
Tìm GTNN
\(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(x+z\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}.\)