Xem xét các mệnh đề sau đúng hay sai và lập mệnh đề phủ định của mỗi mệnh đề:
a) \(\forall x\in R\), \(x^2-x+1>0\)
b) \(\exists n\in N\), (n +2) (n+1 ) = 0
c) \(\exists x\in Q\), \(x^2=3\)
d) \(\forall n\in N\), \(2^n\ge n+2\)
Trong các mệnh đề sau, mệnh đề nào đúng? Giải thích? Phát biểu các mệnh đề đó thành lời
a) \(\exists x\in R\), 5x - \(3x^2\) \(\le1\)
b) \(\exists x\in R\), \(x^2+2x+5\) là hợp số
c) \(\forall n\in N\), \(n^2+1\) không chia hết cho 3
d) \(\forall n\in N^{sao}\), n ( n + 1 ) là số lẻ
e) \(\forall n\in N^{sao}\), n ( n + 1) ( n + 2 ) chia hết cho 6
Trong các mệnh đề sau, mệnh đề nào đúng?
A. \(\exists\in Q:9x^2-1=0\) B. \(\forall x\in R:x^2+2x+1>0\)
C. \(\forall n\in N:n^2>n\) D. \(\exists n\in Z:n^2-3n-5=0\)
Cho mệnh đề A: " \(\exists n\in N\), \(n^2+3n\) chia hết cho 3 ". Tìm mệnh đề phủ định của mệnh đề A và xét tính đúng sai của nó.
Xét tính đúng sai và nêu mệnh đề phủ định
a)\(\forall n\varepsilonℕ/n^2+n+1\) là số nguyên tố
b)\(\exists n\varepsilonℕ/n\left(n+1\right)\) là số chính phương
c)\(\forall x\varepsilonℝ/x^2+2x+36>0\)
Hãy cho biết các mệnh đề sau đúng hay sai? Giải thích và viết mệnh đề phủ định của nó.
\(\forall n\in N\left(2n-1\right)^2-1\)chia hết cho 4
Các mệnh đề sau đây đúng hay sai?
a) \(\forall x\in R\), x > 1 => \(\dfrac{2x}{x+1}< 1\)
b) \(\forall x\in R\), x >1 = > \(\dfrac{2x}{x+1}>1\)
c) \(\forall x\in N\), \(x^2\) chia hết cho 6 = > x chia hết cho 6
d) \(\forall x\in N\), \(x^2\) chia hết cho 9 => x chia hết cho 9
Các mệnh đề sau đây đúng hay sai?
a) \(\forall x\in R\)
, \(x^2\) chia hết cho 6 => x chia hết cho 6
d) \(\forall\in N\), \(x^2\) chia hết cho 9 => x chia hết cho 9
xét tính đúng -sai của mệnh đề : \(\exists n\inℕ;n^2+n+41\)là hợp số