\(\left(x^3-2\right):\left(x^2-2\right)=\dfrac{x^3-2}{x^2-2}\)
\(\left(x^3-2\right):\left(x^2-2\right)=\dfrac{x^3-2}{x^2-2}\)
Thực hiện phép chia:
a) ( x 3 - 3x - 2) : (x - 2);
b) ( x 3 + 6 x 2 + 8x - 3): ( x 2 + 3x -1);
c) (2 x 4 – 7 x 3 + 9 x 2 - 7x + 2): (2 x 2 - 5x + 2).
Phân tích các đa thức sau thành nhân tử:
a,x3+4x-5
b,x3-3x2+4
c,x3+2x2+3x+2
d,x2+2xy+y2+2x-2y-3
e,(x2+3x)2-2(x2+3x)-8
f,(x2+4x+10)2-7(x2+4x+11)+7
Bài 1:Phân tích đa thức thành nhân tử:
a) x3y+x-y-1
b) x2.(x-2)+4.(2-x)
c) x3-x2-20x
d) (x2+1)2-(x+1)2
e) 6x2-7x+2
f) x4+8x2+12
g) (x3+x+1).(x3+x)-2
h) (x+1).(x+2).(x+3).(x+4)-1
i) -(x2+2)2+4x.(x2+2)-3x2
j) -(x2+2)2+4x.(x2+2).3x2
k) -(x2+2)2+4x.(x2+2)+3x2
l) 81x4+4y4
Giúp với ạa
rút gọn A,B,C
A=(3x+7)(2x+3)-(3x-5)(2x+11)
B=(x2-2)(x2+x-1)-x(x3+x2-3x-2)
C=x(x3+x2-3x-2)-(x2-2)(x2+x-1)
Rút gọn phép tính:
(x3-m+1)2+(x2-3)2-2(x2-3)(x3-m+1)
Thực hiện phép tính: (x3 – 8) : (x – 2)
A. x2 + 2 B. x2 – 2x + 4
C. x2 – 4 D. x3 + 2x + 4
Chứng tỏ rằng mỗi biểu thức sau không phụ thuộc vào giá trị của biến x :
A=(x2-2)(x2+x-1)-x(x3+x2-3x-2)
B=2(2x+x2)-x2(x+2)+(x3-4x+3).
a)A=3x(2/3x2-3x4)+(3x2)(x3-1)+(-2+9).x2-12
b)B=x(2x3+x+2)-2x2(x2+1)+x2-2x+1
c)C=x.(2x+1)-x2(x+2)+x3-x+3
Phân tích đa thức thành nhân tử:
a) x 4 + 1 - 2 x 2 ; b) x 2 - y 2 - 5y + 5x;
c) y 2 - 4 x 2 +4x - 1; d) x3 ( 2 + x ) 2 - ( x + 2 ) 2 + 1 - x 3 .
Thực hiện phép tính:
1)(x3-8):(x-2)
2)(x3-1):(x2+x+1)
3)(x3+3x2+3x+1):(x2+2x+1)
4)(25x2-4y2):(5x-2y)