\(-x^2+7x+5=0\)
\(\Leftrightarrow x^2-7x-5=0\left(1\right)\)
Áp dụng định lý Vi-ét cho \(\left(1\right)\Rightarrow\left\{{}\begin{matrix}x_1+x_2=7\\x_1x_2=-5\end{matrix}\right.\)
\(A=x_1\left(3x_1-x_2\right)+x_2\left(3x_2-x_1\right)=3\left(x_1^2+x_2^2\right)-2x_1x_2\)
\(\Rightarrow A=3\left(x_1+x_2\right)^2-8x_1x_2=3.7^2-8.\left(-5\right)=187\)