\(\left(\dfrac{x}{2}\right)^3-\left(\dfrac{y}{4}\right)^3\)
\(=\dfrac{x^3}{8}-\dfrac{y^3}{64}\)
\(=\dfrac{8x^3-y^3}{64}\)
\(=\dfrac{\left(2x-y\right)^3+3\cdot2x\cdot y\left(2x-y\right)}{64}\)
\(=\dfrac{16^3+6\cdot24\cdot16}{64}=100\)
\(\left(\dfrac{x}{2}\right)^3-\left(\dfrac{y}{4}\right)^3\)
\(=\dfrac{x^3}{8}-\dfrac{y^3}{64}\)
\(=\dfrac{8x^3-y^3}{64}\)
\(=\dfrac{\left(2x-y\right)^3+3\cdot2x\cdot y\left(2x-y\right)}{64}\)
\(=\dfrac{16^3+6\cdot24\cdot16}{64}=100\)
\(\left\{{}\begin{matrix}x^3+xy^2+x^2+3x=2y^3+2x^2y+6y\\2\sqrt{y-1}+6\sqrt{xy-5x+3}=x^2+12x-16\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3+xy^2+x^2+3x=2y^3+2x^2y+6y\\2\sqrt{y-1}+6\sqrt{xy-5x+3}=x^2+12x-16\end{matrix}\right.\)
35Cho biểu thức
P=\(\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{xy^3}+\sqrt{x^3y}}\)
a) Rút gọn P
b)Cho xy=16 . Tìm Min P
34 Cho biểu thức
P=\(\frac{x}{\sqrt{xy}-2y}-\frac{2\sqrt{x}}{x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}}-\frac{1-x}{1-\sqrt{x}}\)
a) Rút gọn P
b)Tính P biết 2x^2+y^2-4x-2xy+4=0
cho 2 số thực không âm x và y thỏa mãn:
\(-x-\sqrt{xy}+4y-4\sqrt{y}+16=0\)
tìm giá trị nhỏ nhất của P=\(2x-3\sqrt{xy}+y\)
giải hệ pt a)2x+3y=5 và 4x-5y=1
b)xy-x-y=3 và x^2+y^2-xy=1
c)x+2y+3z=4 và 2x+3y-4z=-3 và 4x+y-z=-4
tìm GTLN GLNN của:
P = x- 2Y biết x^2 + xy + y^2 =3
y= (x^2 +2x+2)/(x^2 + 3)
P= x^2 + xy +2y^2 biết x^2 + y^2 = 2
Mik đang cần gấp. Các bạn giúp mik với ạ.Cảm ơn nh!!!
Bài1: Tìm các số nguyên x,y thỏa mãn: x^4+2x^2=y^3
Bài2: Tìm các số tự nhiên x,y thỏa mãn: 2x.x^2=9y^2+6y+16
Bài3: Cho x,y,z>0 thỏa mãn x^2+y^2+z^2=3. Tìm Max P= x/(3-yz) + y/(3-xz) +z/(3-xy)
Giải hệ phương trình: \(\hept{\begin{cases}y^4-xy^3+x^2y^2=16\\y^2-xy^3-xy\end{cases}}\)
a \(\left(x-1\right)^2-\left(y+1\right)^2=0\)
\(x+3y-5=0\)
b \(xy-2x-y+2=0\)
3x+y=8
c \(\left(x+y\right)^2-4\left(x+y\right)=12\)
\(\left(x-y\right)^2-2\left(x-y\right)=3\)
d \(2x-y=1\)
\(2x^2+xy-y^2-3y=-1\)