a)\(\left(x^2-9\right)\left(x+2\right)=x+3\)
\(\Leftrightarrow\left(x+3\right)\left(x-3\right)\left(x+2\right)-\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(\left(x-3\right)\left(x+2\right)-1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-x-6-1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-x-7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x^2-x-7=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{1\pm\sqrt{29}}{2}\end{cases}}\)
b)\(x^4-6x^2+4x=0\)
\(\Leftrightarrow x\left(x^3-6x+4\right)=0\)
\(\Leftrightarrow x\left[x^3+2x^2-2x-2x^2-4x+4\right]=0\)
\(\Leftrightarrow x\left[x\left(x^2+2x-2\right)-2\left(x^2+2x-2\right)\right]=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x^2+2x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0;x=2\\x=\pm\sqrt{3}-1\end{cases}}\)
c)\(\sqrt{x^2-3x+3}+\sqrt{x^2-3x+6}=3\)
Đặt \(a=\sqrt{x^2-3x+3}>0\Rightarrow a^2+3=x^2-3x+6\)
\(pt\Leftrightarrow a+\sqrt{a^2+3}=3\)\(\Leftrightarrow\sqrt{a^2+3}=3-a\)
\(\Leftrightarrow a^2+3=a^2-6a+9\)
\(\Leftrightarrow6a-6=0\Leftrightarrow6\left(a-1\right)=0\Rightarrow a=1\) (thỏa)
\(\sqrt{x^2-3x+3}=1\)\(\Rightarrow x^2-3x+3=1\)
\(\Rightarrow x^2-3x+2=0\Rightarrow\left(x-2\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\) (thỏa)