∆´ = 7 - 7 = 0
Phương trình có nghiệm kép:
x₁ = x₂ = -b´/a = √7
Vậy S = {√7}
Cách 2:
x² - 2√7x + 7 = 0
⇔ (x - √7)² = 0
⇔ x - √7 = 0
⇔ x = √7
Vậy S = {√7}
∆´ = 7 - 7 = 0
Phương trình có nghiệm kép:
x₁ = x₂ = -b´/a = √7
Vậy S = {√7}
Cách 2:
x² - 2√7x + 7 = 0
⇔ (x - √7)² = 0
⇔ x - √7 = 0
⇔ x = √7
Vậy S = {√7}
Bài 4 : Tìm x biết
a)x( x-2 ) + x - 2 = 0
a) 5x( x-3 ) - x+3 = 0
b) (3x + 5)(4 – 3x) = 0
c) 3x(x – 7) – 2(x – 7) = 0
\(\sqrt{x}-\sqrt{x+1}-\sqrt{x+4}+\sqrt{x+9}=0\)=0
\(2\left(x^2+2\right)=5\sqrt{x^3+1}\)
\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
1) x-\(7\sqrt{x-3}\) -9=0 2) \(\sqrt{x+3}\) =5-\(\sqrt{x-2}\) 3) \(\sqrt{x-4\sqrt{x+4}}\) =3 4) \(\sqrt{8-\dfrac{2}{3}x}-5\sqrt{2}\) =0 5) \(\sqrt{x^2-4x+4}\) =2-x
(x-7)\(\sqrt{\dfrac{x+7}{45-x^2}}\)
với 0<x<7
rút gọn giúp mik vs
1, \(\sqrt{x-1}+\sqrt{x-4}=5\)
2, \(2x-7\sqrt{x}+5=0\)
3, \(\sqrt{2x+1}+\sqrt{x-3}=2\sqrt{x}\)
4, \(x-4\sqrt{x}+2021\sqrt{x-4}+4=0\)
5, \(\sqrt{2x-3}-\sqrt{x+1}=7\left(4-x\right)\)
1. (x+2).(x+4).(x+6).(x+8) +16 =0
2. (x+1).(x+2).(x+3).(x+4) -24 =0
3.(x-1).(x-3).(x-5).(x-7) -20 =0
giải phương trình hộ mik vs mn ơi huhu
Câu 5: Giải phương trình:
a. \(x\)\(\sqrt{3}\) - \(\sqrt{3}\) = \(1-x\)
b. \(7-\sqrt{x^2-6x+9}=0\)
c. \(\sqrt{9\left(x-2\right)^2}\) - 45 = 0
1.Gpt: \(\dfrac{6}{x-3\sqrt{x-2}+7}=\dfrac{1}{\sqrt{x-2}}+\dfrac{\sqrt{3}}{3\sqrt{2\sqrt{x-2}}-3}\)
2.Ghpt: \(\left\{{}\begin{matrix}x^2-y-z=0\\x^3-y^2-z^2+2=0\end{matrix}\right.\)
\(\sqrt{x^2+8}-7x=\sqrt{x^2+3}-6\)(1)
\(\Leftrightarrow\sqrt{x^2+8}-3=7x-7+\sqrt{x^2+3}-2\)
\(\Leftrightarrow\frac{\left(\sqrt{x^2+8}-3\right)\left(\sqrt{x^2+8}+3\right)}{\left(\sqrt{x^2+8}+3\right)}=7\left(x-1\right)+\frac{\left(\sqrt{x^2+3}-2\right)\left(\sqrt{x^2+3}+2\right)}{\sqrt{x^2+3}+2}\)
\(\Leftrightarrow\frac{x^2+8-9}{\left(\sqrt{x^2+8}+3\right)}=7\left(x-1\right)+\frac{x^2-1}{\sqrt{x^2+3}+2}\)
\(\Leftrightarrow\frac{x^2-1}{\sqrt{x^2+8}+3}-7\left(x-1\right)-\frac{x^2-1}{\sqrt{x^2+3+2}}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{x+1}{\sqrt{x^2+8}+3}-7-\frac{x+1}{\sqrt{x^2+3}+2}\right)=0\)
\(\Leftrightarrow x-1=0\)
hay \(\frac{x+1}{\sqrt{x^2+8}+3}-7-\frac{x+1}{\sqrt{x^2+3}+2}=0\)(2)
Từ (1), có:
\(\sqrt{x^2+8}-\sqrt{x^2+3}=7x-6>0\)
\(\Leftrightarrow7x-6>0\)
\(\Leftrightarrow x>\frac{6}{7}\)
Khi đó, có:
\(\frac{x+1}{\sqrt{x^2+8}+3}-\frac{\sqrt{x+1}}{\sqrt{x^2+3}+2}<0\)
\(\Rightarrow\frac{x+1}{\sqrt{x^2+8}+3}-\frac{x+1}{\sqrt{x^2+3}+2}-7<0\)
Vậy, pt (2) vô nghiệm
Do đó, pt (1) có 1 nghiệm là x = 1