\(pt\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\\ \Leftrightarrow6x+20=0\Leftrightarrow x=-\dfrac{20}{6}=\dfrac{-10}{3}\)
Vậy ........
\(pt\text{⇔}x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\text{⇔}6x+20=0\text{⇔}x=-\dfrac{10}{3}\)
Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)
\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)
\(\Leftrightarrow6x=-20\)
hay \(x=-\dfrac{10}{3}\)