Cho các mệnh đề sau:
(I). Nếu a = b c t h ì 2 ln a = ln b + ln c
(II). Cho số thực 0 < a ≠ 1. Khi đó a - 1 log a x ≥ 0 ⇔ x ≥ 1
(III). Cho các số thực 0 < a ≠ 1 , b > 0 , c > 0 . Khi đó b log a c ≥ 0 ⇔ x ≥ 1
(IV). l i m x → + ∞ 1 2 x = - ∞ .
Số mệnh đề đúng trong các mệnh đề trên là
A. 3
B. 4
C. 2
D. 1
Cho a = l o g 3 , b = l n 3. Mệnh đề nào sau đây đúng
A. a b = e 10
B. 10 a = e b
C. 1 a + 1 b = 1 10 e
D. 10 b = e a
Đặt a = ln 2 , b = ln 5 , hãy biểu diễn I = ln 1 2 + ln 2 3 + . . . + ln 98 99 + ln 99 100 theo a và b.
A. I = - 2 a - b
B. I = 2 a + b
C. I = - 2 a + b
D. I = 2 a - b
Với a; b là hai số thực dương tùy ý, ln a 2 b bằng
A. 2 log a - 1 2 log b
B. 2 ln a + 1 2 ln b
C. 2 ln a ln b
D. 2 ln a - 1 2 ln b
Cho a, b là các số dương tùy ý, khi đó ln (a + ab) bằng
A. ln a . ln ( a b )
B. ln a + ln ( 1 + b )
C. ln a ln ( 1 + b )
D. ln a + ln a b
Cho I = ∫ 1 e ln x x ln x + 2 2 d x có kết quả dạng I = ln a + b với a > 0 , b ∈ ℚ . Khẳng định nào sau đây đúng?
A. 2ab = -1
B. 2ab = 1
C. - b + ln 3 2 a = - 1 3
D. b + ln 3 2 a = 1 3
Với a, b là hai số thực khác 0 tùy ý, l n ( a 2 b 4 ) bằng
A. 2ln|a|+4ln|b|
B. 4(ln|a|+ln|b|)
C. 2lna+4lnb
D. 4lna+2lnb
Biết I = ∫ 1 3 x + 2 x d x = a + b ln c ,với a , b , c ∈ ℤ , c < 9. Tính tổng S = a + b + c .
A. S = 7.
B. S = 5.
C. S = 8.
D. S = 6.
Cho tích phân ∫ 0 1 [ 3 x 2 - 2 x + ln ( 2 x + 1 ) ] d x = b ln a - c với a, b, c là các số hữu tỉ, thì a + b + c bằng
A. 3/2
B. 7/2
C. 2/3
D. -4/3
Tính tích phân I = ∫ 1 2 1 x x + 1 2 d t = ln a + b . Khi đó S = a +2b bằng:
A. 2 3
B. - 2 3
C. 1
D. - 1