Nhân 2 vế với 2 rồi đưa về tổng các bình phương
Xét hiệu: 2(a2+b2+c2-ab-bc-ac)= (a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2)
=(a-b)2+(b-c)2+(c-a)2>=0
=> đccm
Nhân 2 vế với 2 rồi đưa về tổng các bình phương
Xét hiệu: 2(a2+b2+c2-ab-bc-ac)= (a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2)
=(a-b)2+(b-c)2+(c-a)2>=0
=> đccm
Với a, b, c bất kỳ. Hãy so sánh 3(a2 + b2 + c2) và (a + b + c)2
A. 3(a2 + b2 + c2) = (a + b + c)2
B. 3(a2 + b2 + c2) ≤ (a + b + c)2
C. 3(a2 + b2 + c2) ≥ (a + b + c)2
D. 3(a2 + b2 + c2) < (a + b + c)2
Với a, b, c bất kỳ. Hãy so sánh a2 + b2 + c2 và ab + bc + ca?
A. a2 + b2 + c2 = ab + bc + ca
B. a2 + b2 + c2 ≥ ab + bc + ca
C. a2 + b2 + c2 ≤ ab + bc + ca
D. a2 + b2 + c2 > ab + bc + ca
với a b c là 3 số bất kì cm a2+b2+c2+3≥2(a+b+c)
a·(b+c)·(b2−c2)+b·(a+c)·(c2−b2)+c·(a+b)·(a2−b2)
cho a, b, c là số dương thỏa mãn a+b+c=1
CMR:
a2/b+b2/c+c2/a>=3(a2+b2+c2)
Mình cần gấp ạ !!
Bài 5:
Cho a,b,c,da,b,c,d là các số thực thỏa mãn {a+b+c+d=0a2+b2+c2+d2=2{a+b+c+d=0a2+b2+c2+d2=2
Tìm GTLN của P=abcd.
Bài 6:
Cho a,b,c≥0a,b,c≥0 thỏa mãn a+b+c=1.a+b+c=1. Tìm giá trị lớn nhất của biểu thức:P=abc(a2+b2+c2)
Cho a,b,c>0 và a+b+c=3. Tìm GTNN của
a) M= a2/a+1 + b2/b+1 + c2/b+1
b) N= 1/a + 4/b+1 + 9/c+2
c) P= a2/a+b + b2/b+c + c2/c+a
d)Q= a4 + b4 + c4 + a2 + b2 + c2 +2020
Cho các số tự nhiên a,b,c thoả mãn: a2+b2+c2=ab+bc+ca và a+b+c=3.Tính M= a2016 +b2015 +c2020
cho a,b,c là độ dài 3 cạnh tam giác.
a)a2/b2+b2/a2≥ a/b+b/a
b)a2/b+b2/a+c2/a≥ a+b+c
c)a2/(b+c)+b2/(a+c)+c2/(a+b)≥ (a+b+c)/2