Vơi a, b, c là các số thực dương. CMR:
\(\dfrac{a}{\sqrt{b^2+ab}}+\dfrac{b}{\sqrt{c^2+bc}}+\dfrac{c}{\sqrt{a^2+ca}}\ge\dfrac{3\sqrt{2}}{2}\)
Cho a, b, c là các số thực dương. CMR:
\(\frac{a}{\sqrt{ab+b^2}}+\frac{b}{\sqrt{bc+c^2}}+\frac{c}{\sqrt{ca+a^2}}\ge\frac{3}{\sqrt{2}}\)
Cho a,b,c là 3 số thực dương tùy ý Chứn minh rằng
\(\dfrac{a}{\sqrt{ab+b^2}}+\dfrac{b}{\sqrt{bc+b^2}}+\dfrac{c}{\sqrt{ac+a^2}}\ge\dfrac{3\sqrt{2}}{2}\)
1)cho a,b,c là các số nguyên dương thỏa mãn đẳng thức \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\)\(\)chứng minh rằng
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}\ge1\)
2)với a,b,c là các số thực dương chứng minh rằng :\(\sqrt{a^2+b^2-3\sqrt{ab}}+\sqrt{b^2+c^2-bc}\ge\sqrt{a^2+c^2}\)
Bài 1: Cho các số thực dương x,y,z. Chứng minh rằng:
\(\frac{x}{\sqrt{2xy+y^2}}+\frac{y}{\sqrt{2yz+z^2}}+\frac{z}{\sqrt{2zx+x^2}}\ge\sqrt{3}\)
Bài 2: Cho a,b,c là các số thực dương thỏa mãn: \(a+b+c=3\)
Tìm min của \(P=\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}+\frac{c}{\sqrt{a}}\)
Bài 3: Cho a,b,c là các số thực dương. Chứng minh rằng:
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{a^2+b^2-ab}+\sqrt{b^2+c^2-bc}+\sqrt{c^2+a^2-ca}\)
Rảnh rỗi :D
Cho a, b, c là các số thực dương thỏa mãn điều kiện: \(ab+bc+ca\le3abc.\)
Chứng minh rằng : \(\sqrt{2}\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\ge\sqrt{\frac{a^2+b^2}{a+b}}+\sqrt{\frac{b^2+c^2}{b+c}}+\sqrt{\frac{c^2+a^2}{c+a}}+3\)
cho \(a,b,c\)là các số thực dương thỏa mãn điều kiện \(ab+bc+ca\le3abc\). chứng minh:\(\sqrt{2}\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)\ge\sqrt{\frac{a^2+b^2}{a+b}}+\sqrt{\frac{b^2+c^2}{b+c}}+\sqrt{\frac{c^2+a^2}{c+a}}+3\)
Cho a, b, c là các số thực dương thoả mãn \(a^2+b^2+c^2=1\)
CMR: \(\frac{a^2+ab+1}{\sqrt{a^2+3ab+c^2}}+\frac{b^2+bc+1}{\sqrt{b^2+3bc+a^2}}+\frac{c^2+ca+1}{\sqrt{c^3+3ca+b^2}}\ge\sqrt{5}\left(a+b+c\right)\)
Xin mấy anh cao thủ giúp mình nhé!
Cho a,b,c là các số thực dương. CMR
\(\sqrt{a^2+\left(1-b\right)^2}+\sqrt{b^2+\left(1-c\right)^2}+\sqrt{c^2+\left(1-b\right)^2}\ge\frac{3\sqrt{2}}{2}\)