Viết phương trình tổng quát của mặt phẳng (α) qua ba điểm A, B, C lần lượt là hình chiếu của điểm M(2;3;-5) xuống các trục Ox, Oy, Oz
A. 15x - 10y - 6z - 30 = 0
B. 15x - 10y - 6z + 30 = 0
C. 15x + 10y - 6z + 30 = 0
D. 15x + 10y - 6z - 30 = 0
Trong không gian với hệ toạ độ Oxyz, cho hình lập phương giới hạn bởi các mặt phẳng x=0;y=0;z=0;x=10;y=10;z=10. Gọi S là tập hợp tất cả các điểm A(x;y;z),( x , y , z ∈ Z ) nằm bên trong (kể cả các mặt) của hình lập phương. Lấy ngẫu nhiên một điểm A(x;y;z) ∈ S. Xác suất để x<y và x<z bằng
A. 285 1331
B. 35 121
C. 204 1331
D. 57 200
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( α ) : bc . x + ac . y + ab . z - abc = 0 với a, b, c là các số khác 0 thỏa mãn 1 a + 2 b + 3 c = 7 . Gọi A, B, C lần lượt là giao điểm của α với các trục tọa độ Ox, Oy, Oz. Biết mặt phẳng α tiếp xúc với mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 72 7 . Thể tích khối OABC với O là gốc tọa độ bằng
A. 2 9
B. 3 4
C. 1 8
D. 4 3
Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;1;2) Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt các trục x Ox, y Oy, z Oz lần lượt tại các điểm A, B, C sao cho O A = O B = O C ≠ 0 ?
A. 3
B. 1
C. 4
D. 8
Trong không gian Oxyz, cho mặt cầu (S): x - 1 2 + y - 2 2 + z - 1 2 = 6 tiếp xúc với hai mặt phẳng P : x + y + 2 z + 5 = 0 , Q : 2 x - y + z - 5 = 0 lần lượt tại các điểm A, B. Độ dài đoạn AB là
A. 3 2
B. 3
C. 2 6
D. 2 3
Trong không gian với hệ toạ độ Oxyz, cho điểm A(-3;-1;3) và đường thẳng d: x - 1 3 = y - 1 2 = z - 5 2 , mặt phẳng (P):x+2y-z+5=0. Đường thẳng Δ qua A và cắt d tại điểm B(a;b;c) và tạo với mặt phẳng (P) góc 30 ° . Tính T=a+b+c.
A. T = 14
B. T = 0
C. T = 21
D. T = 7
Trong không gian với hệ trục Oxyz cho hai điểm A 1 ; 2 ; 1 , B 3 ; 0 ; - 1 và mặt phẳng (P) có phương trình x + y − z = 0. Gọi M và N lần lượt là hình chiếu của A và B trên mặt phẳng (P). Tính độ dài đoạn MN
A. 2 3
B. 4 2 3
C. 2 3
D. 4
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng
d : x - 2 1 = y - 5 2 = z - 2 1 , d ' : x - 2 1 = y - 1 - 2 = z - 2 1 và hai điểm A a ; 0 ; 0 , A ' 0 ; 0 ; b . Gọi (P) là mặt phẳng chứa d và d '; H là giao điểm của đường thẳng AA' và mặt phẳng (P). Một đường thẳng ∆ thay đổi trên (P) nhưng luôn đi qua H đồng thời ∆ cắt d và d ' lần lượt là B, B '. Hai đường thẳng AB, A'B' cắt nhau tại điểm M. Biết điểm M luôn thuộc một đường thẳng cố định có vectơ chỉ phương u → = 15 ; - 10 ; - 1 (tham khảo hình vẽ). Tính T= a+b
A. T = 8
B. T = 9
C. T = - 9
D. T = 6
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 1 2 = y - 2 1 = z + 1 3 và mặt phẳng P : x + y + z - 3 = 0 . Đường thẳng d ' là hình chiếu của d theo phương Ox lên (P), d ' nhận u → a ; b ; 2019 làm một véc tơ chỉ phương. Xác định tổng a + b
A. 2019
B. - 2019
C. 2018
D. - 2020