Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng P : 2 x - 2 y + z = 0 và đường thẳng d : x + 1 1 = y 2 = z - 1 . Gọi ∆ là một đường thẳng chứa trong (P), cắt và vuông góc với d. Véc tơ u → a ; 1 ; b là một véc tơ chỉ phương của ∆ . Tính tổng S = a + b.
A. S = 1
B. S = 0
C. S = 2
D. S = 4
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 2 = y - 2 1 = z + 1 2 nhận véc tơ u → = a ; 2 ; b làm véc tơ chỉ phương. Tính a + b
A. - 8
B. 8
C. 4
D. - 4
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d : x − 2 1 = y − 5 2 = z − 2 1 , d ' : x − 2 1 = y − 1 − 2 = z − 2 1 và hai điểm A a ; 0 ; 0 , A ' 0 ; 0 ; b . Gọi (P) là mặt phẳng chứa d và d¢; H là giao điểm của đường thẳng AA¢ và mặt phẳng (P). Một đường thẳng D thay đổi trên (P) nhưng luôn đi qua H đồng thời D cắt d và d¢ lần lượt tại B, B¢. Hai đường thẳng A B , A ' B ' cắt nhau tại điểm M. Biết điểm M luôn thuộc một đường thẳng cố định có véc tơ chỉ phương u → 15 ; − 10 ; − 1 (tham khảo hình vẽ). Tính T = a + b
A. T = 8
B. T = 9
C. T = - 9
D. T = 6
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x − 1 1 = y − 1 2 = z − 2 − 1 và mặt phẳng ( P ) : 2 x + y + 2 z − 1 = 0. Gọi d’ là hình chiếu của đường thẳng d lên mặt phẳng (P), vectơ chỉ phương của đường thẳng d’ là
A. u 3 → ( 5 ; − 16 ; − 13 ) .
B. u 2 → ( 5 ; − 4 ; − 3 ) .
C. u 4 → ( 5 ; 16 ; 13 ) .
D. u 1 → ( 5 ; 16 ; − 13 ) .
Trong không gian với hệ tọa độ Oxyz, cho điểm M(-3;2;4) và đường thẳng d : x + 3 2 = y − 1 − 2 = z + 3 . Gọi A, B, C lần lượt là hình chiếu vuông góc của M trên trục Ox, Oy, Oz và M'(a;b;c) là hình chiếu song song của điểm M theo phương d lên mặt phẳng (ABC). Giá trị của biểu thức T = a + 2 b + 1 2 c là:
A. T = − 3.
B. T = 17 2 .
C. T = 15 17 .
D. T = 3 2 .
Trong không gian với hệ tọa độ Oxyz, cho điểm M(-3;2;4) và đường thẳng d : x + 3 2 = y − 1 − 2 = z + 3 . Gọi A, B, C lần lượt là hình chiếu vuông góc của M trên trục Ox, Oy, Oz và M'(a;b;c) là hình chiếu song song của điểm M theo phương d lên mặt phẳng (ABC). Giá trị của biểu thức T = a + 2 b + 1 2 c là:
A. T = − 3.
B. T = 17 2 .
C. T = 15 17 .
D. T = 3 2 .
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng P : x + y - 4 z = 0 đường thẳng d: x - 1 2 = y + 1 - 1 = z - 3 1 và điểm A 1 ; 3 ; 1 thuộc mặt phẳng (P). Gọi ∆ là đường thẳng đi qua A nằm trong mặt phẳng (P) và cách d một khoảng cách lớn nhất. Gọi u → = 1 ; b ; c là một vectơ chỉ phương của đường thẳng ∆ . Tính b + c
A. b + c = - 6 11
B. b + c = 0
C. b + c = 1 4
D. b + c = 4.
Trong không gian tọa độ Oxyz, cho đường thẳng x - 1 1 = y - 2 - 2 = z + 1 - 1 và mặt phẳng (P):2x - y - 2z - 2018 = 0. Phương trình mặt phẳng (Q) chứa đường thẳng D và tạo với (P) một góc nhỏ nhất cắt các trục tọa độ lần lượt tại các điểm A, B, C. Thể tích tứ diện O.ABC là:
A. 1 6
B. 32 3
C. 32 6
D. 64 3
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng
d : x - 2 1 = y - 5 2 = z - 2 1 , d ' : x - 2 1 = y - 1 - 2 = z - 2 1 và hai điểm A a ; 0 ; 0 , A ' 0 ; 0 ; b . Gọi (P) là mặt phẳng chứa d và d '; H là giao điểm của đường thẳng AA' và mặt phẳng (P). Một đường thẳng ∆ thay đổi trên (P) nhưng luôn đi qua H đồng thời ∆ cắt d và d ' lần lượt là B, B '. Hai đường thẳng AB, A'B' cắt nhau tại điểm M. Biết điểm M luôn thuộc một đường thẳng cố định có vectơ chỉ phương u → = 15 ; - 10 ; - 1 (tham khảo hình vẽ). Tính T= a+b
A. T = 8
B. T = 9
C. T = - 9
D. T = 6