- 4, 2, 20, 74, 236. Xét dấu của hiệu u n + 1 - u n
- 4, 2, 20, 74, 236. Xét dấu của hiệu u n + 1 - u n
Viết năm số hạng đầu và khảo sát tính tăng, giảm của các dãy số ( u n ) biết u n = 3 n n 2 n
Viết năm số hạng đầu và khảo sát tính tăng, giảm của các dãy số u n biết u n = 2 n + 1 n 2
Viết năm số hạng đầu và khảo sát tính tăng, giảm của các dãy số ( u n ) biết u n = 10 1 - 2 n
Cho dãy số ( u n ) với u n = 1 - 7 n
a) Khảo sát tính tăng, giảm của dãy số;
b) Chứng minh dãy số trên là cấp số cộng. Lập công thức truy hồi của dãy số;
c) Tính tổng 100 số hạng đầu của dãy số.
Cho dãy số u 1 = 1 3 u n + 1 = n + 1 u n 3 n v ớ i n ≥ 1
a) Viết năm số hạng đầu của dãy số.
b) Lập dãy số ( v n ) với v n = u n n . Chứng minh dãy số ( v n ) là cấp số nhân.
c) Tìm công thức tính ( u n ) theo n.
Cho dãy số u n , biết u 1 = - 1 , u n + 1 = u n + 3 v ớ i n ≥ 1 .
a. Viết năm số hạng đầu của dãy số;
b. Chứng minh bằng phương pháp quy nạp: u n = 3 n – 4
6) cho dãy số có các số hạng đầu tiên là 8,15,22,29,36,.. số hạng tổng quát của dãy số là
7) cho dãy số \(\left(u_n\right)\) với \(u_n=\dfrac{2n+5}{5n-4}\) với mọi n ϵ N* cho biết số hạng thứ n là \(\dfrac{7}{12}\), giá trị của n là
8) cho dãy số \(\left(u_n\right)\) với \(u_n=\dfrac{2n}{n^2+1}\) với mọi n ϵ N* số \(\dfrac{9}{41}\) là số hạng thứ bao nhiêu trong dãy số
9) trong các dãy số \(\left(u_n\right)\) cho bởi số hạng tổng quát \(u_n\) sau, dãy số nào là dãy số tăng
A.\(u_n=\left(\dfrac{2}{3}\right)^n\)
B. \(u_n=\dfrac{n}{n+1}\)
C. \(u_n=\dfrac{2}{n.\left(n+1\right)}\)
D. \(u_n=\dfrac{n+1}{n}\)
10) trong các dãy số \(\left(u_n\right)\) cho bởi số hạng tổng quát \(u_n\) sau, dãy số nào là dãy số giảmA. \(u_n=3^n\)B. \(u_n=\dfrac{n-3}{n+1}\)C. \(u_n=\dfrac{n+4}{n+2}\)D. \(u_n=n^4+2\)