Ví dụ 1:
Cho hàm số (fx) = \(\left\{{}\begin{matrix}x^2-5x\\x^3-4x-1\end{matrix}\right.\)khi x>-1 và x<-1.
Kết luận nào sau đây không đúng:
A. H/s liên tục tại x= -1
B. H/s liên tục tại x=1
C. H/s liên tục tại x=-3
D. H/s liên tục tại x=3
Ví dụ 2:
Cho hàm số f(x) = \(\dfrac{2x-1}{x^3-4x}\)
Kết luận nào sau đây đúng:
A. H/s liên tục tại x=-2
B. H/s liên tục tại x=0
C. H/s liên tục tại x=0,5
D. H/s liên tục tại x=2
Ví dụ 3:
Cho f(x) = \(\dfrac{\sqrt{x+2}-\sqrt{2-x}}{x}\)
Kết luận nào sau đây đúng?
A. 0
B. 1
C. \(\dfrac{1}{2}\)
D. \(\dfrac{1}{2\sqrt{2}}\)
Ví dụ 4:
Cho hàm số f(x)= \(\left\{{}\begin{matrix}3x-5\\ax-1\end{matrix}\right.\)khi x≤-2 và x>-2
Với giá trị nào của a thì hàm số f(x) liên tục tại x=-2?
A. a=-5
B, a=0
C. a=5
D. a=6
1. Hàm không liên tục tại \(x=-1\) nên đáp án A sai
2. Hàm liên tục tại \(x=0,5\)
3. Đề thiếu
4. \(\lim\limits_{x\rightarrow-2^-}f\left(x\right)=3.\left(-2\right)-5=-11\)
\(\lim\limits_{x\rightarrow-2^+}f\left(x\right)=-2a-1\)
Hàm liên tục tại x=-2 khi:
\(-2a-1=-11\Rightarrow a=-5\)