Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi Tuấn Nghĩa

vẽ hình luôn ạ cảm ơn

Nguyễn Lê Phước Thịnh
10 tháng 12 2023 lúc 20:14

1:

a: Xét ΔOBA và ΔOCA có

OB=OC

AB=AC

OA chung

Do đó: ΔOBA=ΔOCA

=>\(\widehat{OBA}=\widehat{OCA}\)

mà \(\widehat{OBA}=90^0\)

nên \(\widehat{OCA}=90^0\)

=>AC\(\perp\)OC tại C

=>AC là tiếp tuyến của (O)

b: Xét (O) có

ΔBCE nội tiếp

BE là đường kính

Do đó: ΔBCE vuông tại C

=>BC\(\perp\)CE tại C

Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC

Ta có: OA\(\perp\)BC

CE\(\perp\)CB

Do đó: OA//CE

2: Gọi giao điểm của EC với BA là K

Ta có: BC\(\perp\)CE tại C

=>BC\(\perp\)EK tại C

=>ΔBCK vuông tại C

Ta có: \(\widehat{ACK}+\widehat{ACB}=\widehat{BCK}=90^0\)

\(\widehat{AKC}+\widehat{ABC}=90^0\)(ΔBCK vuông tại C)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ACK}=\widehat{AKC}\)

=>AC=AK

mà AC=AB

nên AK=AB(3)

Ta có: CH\(\perp\)BE

BA\(\perp\)BE

Do đó: CH//BA

Xét ΔEBA có MH//BA

nên \(\dfrac{MH}{BA}=\dfrac{EM}{EA}\left(4\right)\)

Xét ΔEAK có MC//AK

nên \(\dfrac{MC}{AK}=\dfrac{EM}{EA}\left(5\right)\)

Từ (3),(4),(5) suy ra MH=MC

=>M là trung điểm của CH

loading...


Các câu hỏi tương tự
angela nguyễn
Xem chi tiết
tranthuylinh
Xem chi tiết
tranthuylinh
Xem chi tiết
Trí Giải
Xem chi tiết
angela nguyễn
Xem chi tiết
Nguyen
Xem chi tiết
Dorae mon
Xem chi tiết
Phát Lê Tấn
Xem chi tiết
Hoàng Kiều Quỳnh Anh
Xem chi tiết