a: Ta có: \(AE=EB=\dfrac{AB}{2}\)
\(AD=DC=\dfrac{AC}{2}\)
mà AB=AC
nên AE=EB=AD=DC
Xét ΔADB và ΔAEC có
AD=AE
\(\widehat{DAB}\) chung
AB=AC
Do đó: ΔADB=ΔAEC
=>BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=DB
Do đó: ΔEBC=ΔDCB
=>\(\widehat{ECB}=\widehat{DBC}\)
=>\(\widehat{GBC}=\widehat{GCB}\)
Xét ΔGBC có \(\widehat{GBC}=\widehat{GCB}\)
nên ΔGBC cân tại G
c:
Xét ΔABC có
E,D lần lượt là trung điểm của AB,AC
=>ED là đường trung bình của ΔABC
=>\(ED=\dfrac{1}{2}BC\)
Xét ΔGED có GE+GD>ED
mà \(ED=\dfrac{1}{2}BC\)
nên \(GE+GD>\dfrac{1}{2}BC\)







