Đáp án C
Số tam giác tạo được bằng C 6 2 = 15.
Đáp án C
Số tam giác tạo được bằng C 6 2 = 15.
Cho hai đường thẳng song song d 1 , d 2 . Trên d 1 lấy 6 điểm phân biệt, trên lấy 4 điểm phân biệt. Xét tất cả các tam giác được tạo thành khi nối các điểm đó với nhau. Chọn ngẫu nhiên một tam giác. Xác suất để thu được tam giác có hai đỉnh thuộc d 1 là:
A. 2 9
B. 5 9
C. 3 8
D. 5 8
Trong không gian Oxyz, cho đường thẳng d : x = 1 + 3 t y = 1 + 4 t z = 1 . Gọi Δ là đường thẳng đi qua điểm A 1 ; 1 ; 1 và có vectơ chỉ phương u → = 1 ; - 2 ; 2 . Đường phân giác của góc nhọn tạo bởi d và Δ có phương trình là
A. x = 1 + 7 t y = 1 + t z = 1 + 5 t
B. x = - 1 + 2 t y = - 10 + 11 t z = - 6 - 5 t
C. x = - 1 + 2 t y = - 10 + 11 t z = 6 - 5 t
D. x = 1 + 3 t y = 1 + 4 t z = 1 - 5 t
Trên hai đường thẳng song song l 1 và l 2 lấy 6 điểm phân biệt, 4 điểm thuộc l 1 và 2 điểm thuộc l 2 . Tính số tam giác được tạo thành từ 6 điểm đã cho.
A. 4
B. 12
C. 16
D. 28
Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng P : x + y − 4 z = 0 , đường thẳng d : x − 1 2 = y + 1 − 1 = z − 3 1 và điểm A 1 ; 3 ; 1 thuộc mặt phẳng P . Gọi Δ là đường thẳng đi qua A, nằm trong mặt phẳng (P) và cách d một khoảng cách lớn nhất. Gọi u → = a ; b ; 1 là một VTCP của đường thẳng Δ . Tính a + 2 b .
A. a + 2 b = − 3.
B. a + 2 b = 0.
C. a + 2 b = 4.
D. a + 2 b = 7.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng Δ : x + 1 2 = y 3 = z + 1 − 1 và hai điểm A 1 ; 2 ; − 1 , B 3 ; − 1 ; − 5 . Gọi d là đường thẳng đi qua điểm A và cắt đường thẳng Δ sao cho khoảng cách từ B đến đường thẳng d là lớn nhất. Khi đó, gọi M a ; b ; c là giao điểm của d với đường thẳng Δ . Giá trị P = a + b + c bằng
A. -2
B. 4
C. 2
D. 6
Cho hai đường thẳng song song d 1 và d 2 . Trên đường thẳng d 1 có 10 điểm phân biệt, trên đường thẳng d 2 có 20 điểm phân biệt n ≥ 2 . Hỏi có tất cả bao nhiêu tam giác có đỉnh là các điểm đã cho.
A. 1000
B. 2000
C. 2400
D. 2800
Trong không gian Oxyz, đường thẳng Δ qua điểm A(2;1;5) và song song với mặt phẳng (P):3x-y-z+3=0 sao cho khoảng cách từ điểm M(1;2;−1) đến đường thẳng Δ nhỏ nhất, biết u ⇀ a ; 1 ; b là một véctơ chỉ phương của đường thẳng Δ. Giá trị của a+b bằng
A. - 81 13
B. - 9 4
C. 9 4
D. 81 13
Trong không gian với hệ toạ độ Oxyz, cho điểm A(-3;-1;3) và đường thẳng d: x - 1 3 = y - 1 2 = z - 5 2 , mặt phẳng (P):x+2y-z+5=0. Đường thẳng Δ qua A và cắt d tại điểm B(a;b;c) và tạo với mặt phẳng (P) góc 30 ° . Tính T=a+b+c.
A. T = 14
B. T = 0
C. T = 21
D. T = 7
Cho 6 điểm A, B, C, D, E, F cùng thuộc một đường tròn. Hỏi có thể tạo ra được bao nhiêu tam giác có ba đỉnh là 3 trong 6 điểm trên?
A. 20.
B. 120.
C. 18.
D. 9.