Xét (O) có
MA,MB là tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OM là đường trung trực của AB
=>OM\(\perp\)AB tại trung điểm của AB
=>OM\(\perp\)AB tại H và H là trung điểm của AB
Xét ΔAOM vuông tại A có AH là đường cao
nên \(MH\cdot HO=HA^2\)
=>\(4\cdot MH\cdot HO=4\cdot HA^2=\left(2HA\right)^2=AB^2\)