Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Anh Thư

Cho đường tròn (O; R) và điểm M nằm ngoài đường tròn sao cho OM = 2R . Từ M vẽ hai tiếp tuyến MB và MA với đường tròn (A; B là hai tiếp điểm) . Lấy 1 điểm N tùy ý trên cung nhỏ AB. Gọi I , K , H lần lượt là hình chiếu vuông góc của n trên AB , AM , BM.

1. Tính diện tích tứ giác MAOB theo R

2. Chứng minh : góc NHI = góc NBA

3. Gọi E là giao điểm của AN và HI ,F là giao điểm của BN và IK. Chứng minh tứ giác IENF nội tiếp được trong đường tròn

4. Giả sử O, N , M thẳng hàng. Chứng minh 2RNA2 + NB2

Nguyễn Lê Phước Thịnh
24 tháng 1 2022 lúc 17:22

1: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO\(\perp\)AB

Gọi G là giao điểm của OM và AB

=>MO vuông góc với AB tại G

\(AM=R\sqrt{3}\)

\(\Leftrightarrow\left\{{}\begin{matrix}OG=\dfrac{R^2}{2R}=\dfrac{R}{2}\\GM=2R-\dfrac{R}{2}=\dfrac{3}{2}R\end{matrix}\right.\)

\(\Leftrightarrow AG=\dfrac{R^2\sqrt{3}}{2R}=\dfrac{R\sqrt{3}}{2}\)

\(\left\{{}\begin{matrix}S_{AGM}=S_{BGM}=\dfrac{AG\cdot GM}{2}=\dfrac{R\sqrt{3}}{2}\cdot\dfrac{3R}{2}:2=\dfrac{3R^2\sqrt{3}}{8}\\S_{OGA}=S_{OGB}=\dfrac{OG\cdot GB}{2}=\dfrac{R}{2}\cdot\dfrac{R\sqrt{3}}{2}:2=\dfrac{R^2\sqrt{3}}{8}\end{matrix}\right.\)

\(S_{AOBM}=2\cdot\left(S_{AGM}+S_{OGA}\right)=2\cdot\dfrac{4R^2\sqrt{3}}{8}=R^2\sqrt{3}\)

2: Xét tứ giác NHBI có 

\(\widehat{NHB}+\widehat{NIB}=180^0\)

Do đó: NHBI là tứ giác nội tiếp

Suy ra: \(\widehat{NHI}=\widehat{NBA}\)


Các câu hỏi tương tự
Dangthybgggg
Xem chi tiết
Đoàn Tuấn Anh
Xem chi tiết
vo dang nguyen thao
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Lê Quốc Anh
Xem chi tiết
khánh hiền
Xem chi tiết
ngocha_pham
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Bin Mèo
Xem chi tiết