\(\frac{1+\sqrt{a^3}}{1+\sqrt{a}}=\frac{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}+a\right)}{1+\sqrt{a}}=1-\sqrt{a}+a\)
\(\frac{a^2-\sqrt{a}}{a\sqrt{a}+a+\sqrt{a}}=\frac{\sqrt{a}\left(\sqrt{a^3}-1\right)}{\sqrt{a}\left(a+\sqrt{a}+1\right)}=\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{a+\sqrt{a}+1}=\sqrt{a}-1\)