a, \(\overrightarrow{AB}=\left(2;-2\right);\overrightarrow{AC}=\left(4;-4\right)\Rightarrow\frac{1}{2}\overrightarrow{AC}=\left(2;-2\right)\)
\(\Rightarrow\overrightarrow{AB}=\frac{1}{2}\overrightarrow{AC}\Rightarrow A,B,C\) thẳng hàng
b, \(3\overrightarrow{MA}+\overrightarrow{MB}=3\left(\overrightarrow{MB}+\overrightarrow{BA}\right)=3\overrightarrow{BA}+4\overrightarrow{MB}=\overrightarrow{0}\)
\(\Rightarrow\overrightarrow{MB}=\frac{3}{4}\text{}\text{}\overrightarrow{AB}\Rightarrow MB=\frac{3}{4}AB\)
Vậy \(M\in\left(B;\frac{3}{4}AB\right)\)