Trong mặt phẳng Oxy.Cho A(1;2), B(-2;6), C(4;4)
a) Tìm tọa độ điểm D sao cho tứ giác ADCB là HBH
b) Tìm tọa độ điểm E sao cho 2\(\overrightarrow{EA}\)_4\(\overrightarrow{EB}\)+\(\overrightarrow{EC}\)=\(\overrightarrow{0}\)
Cho hình bình hành tâm O và E là trung điểm của AD.Chứng minh:
a)\(\overrightarrow{EA}+\overrightarrow{EB}+2\overrightarrow{EC}=3\overrightarrow{AB}\)
b)\(\overrightarrow{EB}+2\overrightarrow{EA}+4\overrightarrow{ED}=\overrightarrow{EC}\)
cho 3 điểm A(1,2),B(-2,6),C(4,4)
a/tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành
b/tìm tọa độ điểm E sao cho:2vectơ EA-4vectơ EB+ vectơ EC= vectơ 0
Trong mặt phẳng với hệ tọa độ Oxy , cho tam giác ABC với A ( 10 ; 5 ) , B ( 3 ; 2) , C ( 6 ; -5 )
a) Tìm tọa độ D biết \(2\overrightarrow{DA}+3\overrightarrow{DB}-\overrightarrow{DC}=\overrightarrow{0}\)
b) Với F ( -5 ; 8 ) , phân tích \(\overrightarrow{AF}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
c) Chứng minh rằng tam giác ABC vuông tại B .
d) Tìm tọa độ điểm E trên trục Ox sao cho tam giác EBC cân tại E .
e) Tìm tọa độ điểm M thuộc trục Oy sao cho \(\left|\overrightarrow{MA}+3\overrightarrow{MB}\right|\) đạt giá trị nhỏ nhất .
HELP ME !!!!!! MÌNH ĐANG CẦN GẤP LẮM !!!!!!!!
Cho tam giác ABC; D,E,F là các điểm thỏa mãn \(\overrightarrow{DB}=-\frac{2}{3}\overrightarrow{DC};\overrightarrow{EC}=\frac{5}{2}\overrightarrow{EA};\overrightarrow{FA}=\frac{3}{5}\overrightarrow{FB};AD\cap\text{EF}=G.\) CMR: AD//BE//CF.
Cho tam giác ABC biết A(2;5), B(-1;8),C(4;-3). Tìm tọa độ điểm M ∈ Ox sao cho:
a)\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) đạt GTNN.
b) /\(\left|2\overrightarrow{MA}-\overrightarrow{MB}+3\overrightarrow{MC}\right|\) đạt giá trị nhỏ nhất.
cho tam giác ABC , trên cạnh AB , AC lấy hai điểm D và E sao cho \(\overrightarrow{AD}=2\overrightarrow{DB},\overrightarrow{CE}=3\overrightarrow{EA}\) . GỌi M là trung điểm DE và I là trung điểm của BC . Đẳng thức vecto nào sau đây đúng :
A . \(\overrightarrow{MI}=\dfrac{1}{6}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\) B. \(\overrightarrow{MI}=\dfrac{-1}{6}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)
C. \(\overrightarrow{MI}=\dfrac{1}{6}\overrightarrow{AB}-\dfrac{3}{8}\overrightarrow{AC}\) D. \(\overrightarrow{MI}=\dfrac{-1}{6}\overrightarrow{AB}-\dfrac{3}{8}\overrightarrow{AC}\)
cho tam giac ABC . D,E là các điểm thỏa mãn \(\overrightarrow{BD}=\dfrac{1}{2}\overrightarrow{BC},\overrightarrow{AE}=\dfrac{1}{4}\overrightarrow{AC},K\)trên AD thỏa \(\overrightarrow{AK}=\dfrac{a}{b}\overrightarrow{AD}\) (\(\dfrac{a}{b}\) tối giản) sao cho 3 điểm B,K,E thẳng hàng. tính a2+b2
Cho tứ giác ABC.Gọi E,F,G,H lần lượt là trung điểm của AB,BC,CD,DA và M là 1 điểm tùy ý.Cứng minh:
a)\(\overrightarrow{AF}+\overrightarrow{BG}+\overrightarrow{CH}+\overrightarrow{DE}=\overrightarrow{0}\)
b)\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{ME}+\overrightarrow{MF}+\overrightarrow{MG}+\overrightarrow{MH}\)
c)\(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}=4\overrightarrow{AI}\) (Với I là trung điểm của FH)