Chủ đề:
Bài 2. Chuyển động thẳng đềuCâu hỏi:
Hai ô tô xuất phát cùng một lúc từ hai địa điểm A và B cách nhau 20km chuyển động đều cùng chiều dương từ A đến B. Phương trình chuyển động của 2 xe vào thời điểm và vị trí hai xe gặp nhau
1/ cho tam giác ABC và điểm M thỏa mãn \(2\overrightarrow{BM}\) +\(3\overrightarrow{CM}\)=\(\overrightarrow{0}\). Khẳng định nào sau đây đúng?
a) BM=\(\frac{2}{5}.BC\) b) CM=\(\frac{3}{5}.BC\) c) M nằm ngoài cạnh BC d) M nằm trên cạnh BC
3/ cho hình vuông ABCD. GỌi M,N lần lượt là trung điểm của cạnh BC và CD.Phân tích \(\overrightarrow{AB}\)qua hai vectơ \(\overrightarrow{AM}\)và \(\overrightarrow{BN}\) ta được
a) \(\overrightarrow{AB=}\)\(\frac{4}{5}.\overrightarrow{AM}\)+\(\frac{2}{5}.\overrightarrow{BN}\) b) \(\overrightarrow{AB=}\)\(-\frac{4}{5}.\overrightarrow{AM}\)\(-\frac{2}{5}.\overrightarrow{BN}\) c) \(\overrightarrow{AB=}\)\(\frac{4}{5}.\overrightarrow{AM}\)-\(\frac{2}{5}.\overrightarrow{BN}\) d) \(\overrightarrow{AB=}-\frac{4}{5}.\overrightarrow{AM}+\frac{2}{5}.\overrightarrow{BN}\)
4/cho tam giác ABC cân tại A, AB=a,\(\widehat{ABC}=30^O\).Độ dài của vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\) là :
a) \(\frac{a\sqrt{3}}{2}\) b) \(\frac{a}{2}\) c) a d) \(a\sqrt{3}\)
5/Cho hình thoi ABCD có cạnh bằng a và \(\widehat{BAD}=120^O\).Độ dài của vectơ \(\overrightarrow{CB}-\overrightarrow{BA}\)là:
a) \(a\sqrt{3}\) b) 0 c) a d) \(\frac{a\sqrt{3}}{2}\)
8/cho hình chữ nhật ABCD tâm O và AB= a, BC=\(a\sqrt{3}\).Độ dài của vectơ \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}\) là
a) 2a b) 3a c) \(\frac{a}{2}\) d) a
10/cho hình bình hành ABCD tâm O.Khi đó \(\overrightarrow{AC}+\overrightarrow{BD}\)
a) cùng hướng với \(\overrightarrow{AB}\) b) cùng hướng với \(\overrightarrow{AD}\) c) ngược hướng với \(\overrightarrow{AB}\) d) ngược hướng với \(\overrightarrow{AD}\)
11/Cho lục giác đều ABCDEF tâm O
a) \(\overrightarrow{AB}=\frac{1}{2}.\overrightarrow{FC}\) b) \(\overrightarrow{OA}+\overrightarrow{OB}=\overrightarrow{0}\) c) \(\overrightarrow{AF}+\overrightarrow{CD}=\overrightarrow{0}\) d) \(\overrightarrow{AB}=\overrightarrow{DE}\)
12/ Cho hình bình hành ABCD tâm O.Gọi \(\overrightarrow{v}=\overrightarrow{OA}+2\overrightarrow{OB}+3\overrightarrow{OC}+4\overrightarrow{OD.}\)Khi đó
a) \(\overrightarrow{v}=\overrightarrow{AD}\) b) \(\overrightarrow{v}=\overrightarrow{AB}\) c) \(\overrightarrow{v}=2\overrightarrow{AB}\) d) \(\overrightarrow{v}=2\overrightarrow{AD}\)
13/Cho 3 diểm phân biệt A,B,C sao cho \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\) ngược hướng và AB=a, AC=b. Độ dài của vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\)là
a) a+b b) a-b c)b-a d) \(\left|a-b\right|\)
100 - 58 = 42
t mình mình t lại
4/Xác định Parabol y = ax2 +bx+c, biết parabol có đỉnh nằm trên trục hoành và đi qua hai điểm A (0;1) và B(2;1)
5/Cho X = [-3;1),Y = (0;4). Xác định và biểu diễn kết quả trên trục số: X giao Y,X hợpY
6/Cho B ={x∈R sao cho -4 < x ≤ 4}; C = {x ∈ R sao cho x ≤ m}. Xác định tập B giao C tùy theo giá trị của m?