Trong mặt phẳng tọa độ 0xy ,cho tam giác ABC vuông tại B , BC=2BA .Gọi e ,f lần lượt là trung điểm của BC , AC . Trên tia đối của tia fe lấy điểm m sao cho Fm=3FE .Biết điểm m có tọa độ (5;-1) , đường thẳng AC có phương trình 2X+2y-3=0, điểm A có hoành đọ là số nguyên . Xác định tọa độ các đỉnh của tam giác ABc
Trong không gian với hệ tọa độ Oxyz cho tam giác ABC vuông tại C có A B C ^ = 60 ° ; A B = 3 2 . Đường thẳng AB có phương trình x - 3 1 = y - 4 1 = x + 8 - 4 , đường thẳng AC nằm trên mặt phẳng α : x + z - 1 = 0 . Biết điểm B là điểm có hoành độ dương, gọi (a,b,c) là tọa độ của điểm C. Giá trị a + b + c bằng
A. 2
B. 3
C. 4
D. 7
Trong không gian Oxyz, cho tam giác ABC vuông tại C, A B C ^ = 60 ° , A B = 3 2 . Đường thẳng AB có phương trình x − 3 1 = y − 4 1 = z + 8 − 4 , đường thẳng AC nằm trên mặt phẳng α : x + z − 1 = 0. Biết B là điểm có hoành độ dương, gọi a ; b ; c là tọa độ của điểm C, giá trị của a+b+c bằng
A. 3
B. 2
C. 4
D. 7
Trong mặt phẳng với hệ trục tọa độ Oxy cho tam giác ABC vuông tại A(2;1), đường thẳng BC: 4x-3y+5=0. P là một điểm di động trên cạnh AC (P khác A và C). Đường tròn đường kính PC cắt BP tại I sao cho: BP.BI + CP.CA=25. Biết rằng B, C có tọa độ nguyên và C có hoành độ lớn hơn B. Hoành độ của điểm B là
A.-2
B. -1
C. 1
D. 2
Trong mặt phẳng tọa độ Oxy, cho hình bình hành ABCD có diện tích bằng 16. Biết tam giác ABC cân tại A, cạnh BC=4 và K ( 21 5 ; 18 5 ) là hình chiếu của điểm B xuống AC. Tìm tọa độ điểm D biết rằng điểm B thuộc đường thẳng △ : x + y - 3 = 0 đồng thời hoành độ các điểm B, C đều là các số nguyên
A. D(5;2)
B. D(7;6)
C. (-7;-6)
D. D(-5;-2)
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có diện tích bằng 2, đường thẳng đi qua A và B có phương trình x-y=0. Biết I(2 ;1) là trung điểm của BC. Tìm tọa độ trung điểm M của AC với M có tung độ dương
A. M(-3;4).
B. M(1;0).
C. M(3;2).
D. M(4;3).
Trong mặt phẳng với hệ toạ độ Oxy cho tam giác ABC. Hai điểm M 4 ; - 1 , N 0 ; - 5 lần lượt thuộc AB, AC và phương trình đường phân giác trong góc A là x - 3 y + 5 = 0 , trọng tâm của tam giác ABC là G. Tìm toạ độ các đỉnh của tam giác ABC
A. A 1 ; 2 , B - 2 ; 5 , C - 1 ; 12
B. A 1 ; 2 , B - 2 ; 5 , C 0 ; 1
C. A 1 ; 0 , B - 2 ; 5 , C - 1 ; 12
D. A 1 ; 2 , B - 1 ; 5 , C - 1 ; 12
trong mặt phẳng tọa độ oxy cho hình thang cân ABCD( AB song song với CD) có tọa độ đỉnh A(2,-1).giao điểm của 2 đường chéo AC và BD là I(1,2).đường tròn ngoại tiếp tam giác ADI có tâm E(-27/8,-9/8),biết đường thẳng BC qua M(9,-6).tìm B,D , biết B có tung độ nhỏ hơn 3
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC cân tại A có phương trình AB, AC lần lượt là x + 2 y - 2 = 0 , 2 x + y + 1 = 0 , điểm M (l;2) thuộc đoạn thẳng BC. Tìm tọa độ điểm D sao cho tích vô hướng D B → . D C → có giá trị nhỏ nhất
A. Không tồn tại điểm D
B. Có hai điểm D thỏa yêu cầu bài toán
C. Có một điểm D thỏa yêu cầu bài toán
D. D (0;3) hoặc D (l;2)