Trong mặt phẳng Oxy, cho hình chữ nhật OMNP với M(0;10), N(100;10) và P(100;0). Gọi S là tập hợp tất cả các điểm A(x;y) với x,y ϵ ℤ nằm bên trong (kể cả trên cạnh) của OMNP. Lấy ngẫu nhiên một điểm A(x;y)ϵS Xác suất để x+y ≤ 90 bằng:
A. 845/1111
B. 473/500
C. 169/200
D. 86/101
Trong mặt phẳng Oxy, cho hình chữ nhật OMNP với M 0 ; 1 ; 0 , N 100 ; 10 và P 100 ; 0 . Gọi S là tập hợp tất cả các điểm A x ; y với x , y ∈ ℤ nằm bên trong (kể cả trên cạnh) của OMNP . Lấy ngẫu nhiên một điểm A x ; y . Xác suất để x + y ≤ 90 bằng:
A. 845 1111 .
B. 473 500 .
C. 169 200 .
D. 86 101 .
Trong không gian với hệ toạ độ Oxyz, cho hình lập phương giới hạn bởi các mặt phẳng x=0;y=0;z=0;x=10;y=10;z=10. Gọi S là tập hợp tất cả các điểm A(x;y;z),( x , y , z ∈ Z ) nằm bên trong (kể cả các mặt) của hình lập phương. Lấy ngẫu nhiên một điểm A(x;y;z) ∈ S. Xác suất để x<y và x<z bằng
A. 285 1331
B. 35 121
C. 204 1331
D. 57 200
Trong hệ trục tọa độ Oxy, cho A(-2;0), B(-2;2), C(4;2), D(4;0). Chọn ngẫu nhiên 1 điểm có tọa độ (x;y) với x,y là các số nguyên, nằm trong hình chữ nhật ABCD (kể cả các điểm nằm trên cạnh). Gọi X là biến cố: “x,y đều chia hết cho 2”. Xác suất của biến cố X là
A. 8 11
B. 7 21
C. 13 21
D. 1
Trên mặt phẳng Oxy ta xét một hình chữ nhật ABCD với các điểm A − 2 ; 0 , B − 2 ; 2 , C 4 ; 2 , D ( 4 ; 0 ) . Một con châu chấu nhảy trong hình chữ nhật đó tính cả trên cạnh hình chữ nhật sao cho chân nó luôn đáp xuống mặt phẳng tại các điểm có tọa độ nguyên (tức là điểm có cả hoành độ và tung độ đều nguyên). Tính xác suất để nó đáp xuống các điểm M( x;y) mà x + y < 2
A. 3 7
B. 8 21
C. 1 3
D. 4 7
Gọi S là tập hợp tất cả các điểm M(x;y) có tọa độ là các số nguyên thỏa mãn 0 ≤ x ≤ 4 ; 0 ≤ y ≤ 4 . Chọn ngẫu nhiên 3 điểm thuộc S. Xác suất để ba điểm được chọn là ba đỉnh một tam giác bằng
A. 129 140
B. 217 230
C. 108 115
D. 1077 1150
Trên mặt phẳng O x y ta xét một hình chữ nhật A B C D với các điểm A − 2 ; 0 , B − 2 ; 2 , C 4 ; 2 , D 4 ; 0 . Một con châu chấu nhảy trong hình chữ nhật đó tính cả trên cạnh hình chữ nhật sao cho chân nó luôn đáp xuống mặt phẳng tại các điểm có tọa độ nguyên( tức là điểm có cả hoành độ và tung độ đều nguyên). Tính xác suất để nó đáp xuống các điểm M x ; y mà x + y < 2.
A. 3 7
B. 8 21
C. 1 3
D. 4 7
Trên mặt phẳng, cho hình vuông có cạnh bằng 2. Chọn ngẫu nhiên một điểm thuộc hình vuông đã cho (kể cả các điểm nằm trên cạnh của hình vuông). Gọi P là xác suất để điểm được chọn thuộc vào hình tròn nội tiếp hình vuông đã cho (kể cả các điểm nằm trên đường tròn nội tiếp hình vuông), giá trị gần nhất của P là
A. 0,242
B. 0,215
C. 0,785
D. 0,758
Trong không gian cho điểm A(1;0;2), mặt phẳng (P): x-y+z-2=0 và mặt cầu (S): x2+ (y-2)2+ (z+1)2 = 25. Gọi M là một điểm di động trên mặt cầu (S) và N là điểm nằm trên mặt phẳng (P) sao cho A là trung điểm của MN. Quỹ tích điểm N là đường cong có độ dài nằm trong khoảng nào dưới đây?
A. (5;12)
B. (12;16)
C. (16;20)
D. (20;24)