Trong không gian với hệ toạ độ Oxyz, cho điểm A(-3;-1;3) và đường thẳng d: x - 1 3 = y - 1 2 = z - 5 2 , mặt phẳng (P):x+2y-z+5=0. Đường thẳng Δ qua A và cắt d tại điểm B(a;b;c) và tạo với mặt phẳng (P) góc 30 ° . Tính T=a+b+c.
A. T = 14
B. T = 0
C. T = 21
D. T = 7
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d 1 : x - 3 - 1 = y - 3 - 2 = z + 2 1 và d 2 : x - 5 - 3 = y + 1 2 = z - 2 1 và mặt phẳng (P) có phương trình x + 2 y + 3 z - 5 = 0 . Đường thẳng Δ vuông góc với (P) cắt d 1 và d 2 có phương trình là:
A. ∆ : x - 1 1 = y + 1 2 = z 3
B. ∆ : x - 2 1 = y - 3 2 = z - 1 3
C. ∆ : x - 3 1 = y - 3 2 = z + 2 3
C. ∆ : x - 1 3 = y + 1 2 = z 1
Trong không gian với hệ toạ độ Oxyz, cho điểm A - 3 ; - 1 ; 3 và đường thẳng d : x - 1 3 = y - 1 2 = z - 5 2 mặt phẳng ( P ) : x + 2 y - z + 5 = 0 Đường thẳng ∆ qua A và cắt d tại điểm B a ; b ; c và tạo với mặt phẳng (P) góc 30 0 . Tính T = a + b + c
A. T = 14
B. T = 0
C. T = 21
D. T = 7
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ : x + 2 1 = y - 2 1 = z - 1 và mặt phẳng ( P ) : x + 2 y - 3 z + 4 = 0 . Đường thẳng d nằm trong (P) sao cho d cắt và vuông góc với ∆ có phương trình là:
A. x + 3 1 = y - 1 - 1 = z - 1 2
B. x + 1 - 1 = y - 3 2 = z + 1 1
C. x - 3 1 = y + 1 - 1 = z + 1 2
D. x + 3 - 1 = y - 1 2 = z - 1 1
Trong không gian Oxyz, cho hai đường thẳng d 1 : x - 3 - 1 = y - 3 - 2 = z + 2 1 ; d 2 : x - 5 - 1 = y + 1 2 = z - 2 1 và mặt phẳng (P): x + 2y + 3z - 5 = 0. Đường thẳng vuông góc với (P), cắt d 1 , d 2 có phương trình là
A. x - 1 1 = y + 1 2 = z 3
B. x - 2 1 = y - 3 2 = z - 1 3
C. x - 3 1 = y - 3 2 = z + 2 3
D. x - 1 3 = y + 1 2 = z 1
Trong không gian Oxyz cho hai đường thẳng d 1 : x − 3 − 1 = y − 3 − 2 = z + 2 1 , d 2 : x − 5 − 3 = y + 1 2 = z − 2 1 và mặt phẳng P : x + 2 y + 3 z − 5 = 0 . Đường thẳng vuông góc với (P) cắt d 1 và d 2 có phương trình là
A. x − 1 1 = y + 1 2 = z 3 .
B. x − 2 1 = y − 3 2 = z − 1 3 .
C. x − 3 1 = y − 3 2 = z + 2 3 .
D. x − 1 3 = y + 1 2 = z 1 .
Trong không gian Oxyz, cho hai đường thẳng d 1 : x - 3 - 1 = y - 3 - 2 = z + 2 1 , d 2 : x - 5 - 3 = y + 1 2 = z - 2 1 và mặt phẳng (P): x +2y +3z -5 =0. Đường thẳng vuông góc với (P), cắt cả d 1 v à d 2 có phương trình là
A. x - 1 3 = y + 1 2 = z 1
B. x - 2 1 = y - 3 2 = z - 1 3
C. x - 1 1 = y + 1 2 = z 3
D. x - 3 1 = y - 3 2 = z + 2 3
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng ∆ là giao tuyến của hai mặt phẳng P : z - 1 = 0 và Q : x + y + z - 3 = 0 . Gọi d là đường thẳng nằm trong mặt phẳng P , cắt đường thẳng x - 1 1 = y - 2 - 1 = z - 3 - 1 và vuông góc với đường thẳng . Phương trình của đường thẳng d là
A. x = 3 + t y = t z = 1 + t
B. x = 3 - t y = t z = 1
C. x = 3 + t y = t z = 1
D. x = 3 + t y = - t z = 1 + t
Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt phẳng (P) đi qua điểm A(2;1;-3), đồng thời vuông góc với hai mặt phẳng (Q): x+y+3z=0, (R): 2x-y+z=0 là
A. 4x + 5y – 3z + 22 = 0.
B. 4x – 5y – 3z -12 =0
C. 2x + y – 3z – 14 = 0.
D. 4x + 5y – 3z – 22 = 0
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P): x+y+z-2=0, (Q): x+2y-z+3=0 và điểm A(1;0;4). Phương trình đường thẳng qua A và cùng song song với (P) và (Q) là:
A. d : x - 1 - 3 = y 2 = z - 4 1
B. d : x - 1 3 = y 1 = z - 4 1
C. d : x - 1 - 3 = y - 1 = z - 4 1
D. d : x - 1 - 3 = y 2 = z - 4 - 1