Đáp án D
Ta có: D ' C ' → = A B → = 2 ; − 4 ; 0 ⇒ C ' 8 ; 4 ; 10 . C ' B ' → = C B → = 5 ; − 4 ; 7 ⇒ B ' 13 ; 0 ; 17
Đáp án D
Ta có: D ' C ' → = A B → = 2 ; − 4 ; 0 ⇒ C ' 8 ; 4 ; 10 . C ' B ' → = C B → = 5 ; − 4 ; 7 ⇒ B ' 13 ; 0 ; 17
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(0; 0; 2), B(3; 0; 5), C(1; 1; 0). Tọa độ của điểm D sao cho ABCD là hình bình hành là
A. D(4; 1; 3)
B. D(-4; -1; -3)
C. D(2; 1; -3)
D. D(-2; 1; -3)
Trong không gian với hệ trục tọa độ Oxyz, cho A(0;-1;1), B(-2;1;-1), C(-1;3;2). Biết rằng ABCD là hình bình hành, khi đó tọa độ điểm D là:
A. D − 1 ; 1 ; 2 3
B. D 1 ; 3 ; 4
C. D 1 ; 1 ; 4
D. D − 1 ; − 3 ; − 2
Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' biết A(2;-1;2), C(-2;3;2), B'(1;2;1), D'(3;0;1). Khi đó tọa độ điểm B là
A. B(-1;2;2)
B. B(1;-2;-2)
C. B(2;-2;1)
D. B(2;-1;2)
Trong không gian tọa độ Oxyz cho hình hộp ABCD.A’B’C’D’ với các điểm A(-1;1;2), B(-3;2;1), D(0;-1;2) và A(2;1;2). Tìm tọa độ đỉnh C’
Trong không gian với hệ trục tọa độ Oxyz, cho hình hộp ABCD.A’B’C’D’. Biết tọa độ các đỉnh A(-3;2;1), C(4;2;0), B'(-2;1;1), D'(3;5;4). Tìm tọa độ điểm A’ của hình hộp
A. A'(-3;3;1)
B. A'(-3;-3;3)
C. A'(-3;-3;-3)
D. A'(-3;3;3)
Trong không gian với hệ tọa độ Oxyz cho tam giác ABC vuông tại C có A B C ^ = 60 ° ; A B = 3 2 . Đường thẳng AB có phương trình x - 3 1 = y - 4 1 = x + 8 - 4 , đường thẳng AC nằm trên mặt phẳng α : x + z - 1 = 0 . Biết điểm B là điểm có hoành độ dương, gọi (a,b,c) là tọa độ của điểm C. Giá trị a + b + c bằng
A. 2
B. 3
C. 4
D. 7
Trong không gian với hệ tọa độ Oxyz, cho 3 điểm A 1 ; 2 ; − 1 , B − 3 ; 4 ; 3 , C 3 ; 1 ; − 3 . Số điểm D sao cho 4 điểm A, B, C, D là 4 đỉnh của một hình bình hành là
A. 3
B. 1
C. 2
D. 0
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 2 1 = y - 2 2 = z + 2 - 1 và mặt phẳng ( α ) :2x+2y-z-4=0. Tam giác ABC có A(-1;2;1), các đỉnh B, C nằm trên (α) và trọng tâm G nằm trên đường thẳng d. Tọa độ trung điểm M của BC là
A. M(2;1;2)
B. M(0;1;-2)
C. M(1;-1;-4)
D. M(2;-1;-2)
Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCD có điểm A(1;1;1) , B(2;0;2), C(-1; -1; 0), D(0;3;4) Trên các cạnh AB, AC, AD lần lượt lấy các điểm B', C', D' thỏa: A B A B ' + A C A C ' + A D A D ' = 4 Viết phương trình mặt phẳng (B'C'D') biết tứ diện AB'C'D' có thể tích nhỏ nhất?
A. 16x+40y+44z-39=0
B. 16x+40y-44z+39=0
C. 16x-40y-44z+39=0
D. 16x-40y-44z-39=0